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Abstract

A study of the applicability of CST towards predicting transport coefficients in liquid metals has been undertaken with particular

emphasis on alkali metals. Characteristic parameters were obtained from six different first principles calculations of inter-ionic

potentials of simple metals reported in the literature. A wide variation was observed in the characteristic parameters as reported by

various authors. Among these, the potential parameters of Shyu et al. provided the best correlation of experimental diffusivity and

viscosity data for alkali metals over moderate temperature ranges. However, use of the Goldschmidt diameter as the characteristic

distance parameter and kBTm, where Tm is the melting temperature, as the characteristic energy parameter gave as good, if not better,

results for alkali metals. This parameter set was not found to be satisfactory when non-alkali metals were also included. Chapman’s

characteristic parameters, obtained from a fit to the viscosity data, provided a reasonable correlation of the diffusivity data to most,

but not all metals studied. Fundamental issues associated with attempting to group all liquid metals under a single corresponding

states theory as well with the conventional use of the potential well-depth and the distance at which the potential becomes zero as

characteristic parameters for liquid metals have been pointed out. A preliminary statistical analysis has been performed to assess the

reliability of our predictions in view of the experimental uncertainties in viscosity and diffusivity data.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Corresponding states; Transport coefficients; Liquid metals
1. Introduction

The central idea of corresponding states theory (CST)

is the existence of a universal relation between dimen-

sionless parameters formed using the physical quantities

of interest. The existence of such a relation may be es-

tablished by a dimensional analysis or by use of a

mathematical equation, if one exists, connecting the

relevant quantities. An example of the latter is the van
der Waals equation of state from which an explicit ex-

pression between the reduced quantities (pressure, vol-

ume and temperature) can be obtained. Often, it might

not be possible to get a convenient analytical expression

connecting the reduced or dimensionless quantities. In

such a case, one may use limited experimental data to
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obtain such an expression once the appropriate dimen-
sionless variables have been identified. An example of

this approach is the case of transport coefficients where

one may formally express diffusivity or viscosity in terms

of molecular parameters using statistical mechanics, and

compute these coefficients numerically. However, these

calculations tend to be computationally intensive and it

is convenient to have simpler analytical expressions es-

pecially when one is interested in estimating these
quantities for a wide range of systems and conditions.

CST provides a useful and powerful, but by no means

the only, option. It is a particularly attractive approach

for liquid metals where the presence of long-range in-

teractions not only adds to the computational com-

plexity but also renders the widely used hard sphere

theories less effective than they are for simple liquids. In

this work, the applicability of CST to the estimation of
diffusivity and viscosity of liquid metals is examined.

mail to: rravi@iitm.ac.in
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However, it is useful and instructive first to present a

terse review of the relevant literature and to outline the

motivation for the present work.
2. Literature review and motivation for current work

One of the earliest applications of CST to transport

coefficients of liquid metals is the work of Chapman [1].

Chapman used kinetic theory to obtain suitable di-

mensionless quantities for viscosity, density and tem-

perature in terms of a characteristic energy ðeÞ and a

characteristic distance ðrÞ parameter. His equations also
predicted a quadratic dependence of the reduced vis-

cosity on the reduced density. To obtain a correlation

for the temperature dependence of viscosity, he adopted

the Lennard-Jones (L-J) parameter, eLJ, and the

Goldschmidt diameter, rGS, for Na and K as their

characteristic energy and distance parameters, respec-

tively. This, in turn, allowed the development of a plot

of the viscosity versus temperature in terms of the re-

duced variables using experimental viscosity data.

Chapman then deduced the values of the characteristic

energy parameter, e, for a range of other metals by

forcing their experimental viscosity data to conform to

the plot obtained for Na and K. The Goldschmidt di-

ameter was chosen as the distance parameter for all

metals.

Following Chapman, Pasternak and Olander [2] used
the parameters provided by Chapman to obtain a cor-

relation for the diffusion coefficient using experimental

data for nine liquid metals. Riazi and Daubert [3] used a

dimensional analysis to connect the diffusivity, viscosity

and thermal conductivity of liquid metals with each

other as well as with temperature and density. Also,

following the lines of generalized CST for thermal

equations of state, they developed a correlation between
reduced diffusivity and reduced temperature with the

acentric factor as a parameter.

At this juncture, it is worthwhile to point out a few

features of the procedure adopted by Chapman [1]. The

real merit of the procedure lies in the characteristic pa-

rameters it provides which may then be used to predict,

for instance, other transport coefficients such as diffu-

sivity. But it is not truly a test of CST as an accurate
Table 1

Characteristic distance ðrÞ and energy ðeÞ parameters of alkali metals

Metal Chapman frGS; kBTmg Shyu et al. Hafner and

Heine

r (�A), e (K) r (�A), e (K) r (�A), e (K) r (�A), e (K)

Li 3.14, 2350 3.14, 453.5 2.73, 567.1 2.92, 950.3

Na 3.84, 1970 3.84, 369.5 3.33, 445.6 3.41, 1546.9

K 4.76, 1760 4.76, 336.5 4.12, 421.4 3.81, 1988.4

Rb 5.04, 1600 5.02, 311.9 4.41, 402.2 3.86, 2070.9

Cs 5.40, 1550 5.40, 301.6 4.76, 385.5 3.95, 2201.6
model for the viscosity of liquid metals because the

characteristic energy parameter, except for two metals,

is not determined a priori and/or using independent

means but by using the experimental viscosity data.

Thus, the e value for all but two metals serves merely as
a fitting parameter. Chapman [1] had recognized this

and he tried to develop a fundamental basis to the found

parameters by noting that the e value, which represents

the depth of the L-J potential well, increased, as was

expected, with the melting temperature of the metal, Tm.
But this does not invalidate the comment made above

and hence his analysis merely demonstrates the internal

consistency of the experimental results. It may be noted
that Chapman’s characteristic energy parameters [1] are

generally larger by several factors than the well-depth of

potentials determined by first principles calculations,

some of which are listed in Table 1 for alkali metals. In

some of the calculations, the well-depth actually de-

creases with increase in Tm. Furthermore, these calcu-

lations reveal that the L-J potential is not suitable for

liquid metals. For one, liquid metal potentials have a
softer repulsive core and secondly they exhibit long-

range oscillations not exhibited by the L-J potential.

In summary, the central problem in the use of CST

thus lies in the choice of physically realistic character-

istic parameters. A true evaluation of the applicability of

CST to transport coefficients can be obtained only if the

characteristic parameters are determined a priori using

independent means, without any reliance on the exper-
imental data of the very quantities we wish to predict.

With the availability in the literature now of a large

number of first principles calculations of liquid metal

potentials, it would be worthwhile to reevaluate the

applicability of CST to liquid metals. With this in view,

it is necessary first to examine the factors that led to the

choice of the characteristic parameters used in this work.
3. Characteristic parameters for CST of transport coef-

ficients

3.1. Motivation for choice made in this work

The present work is based on the choice of the po-

tential well-depth, juminj, and the inter-atomic distance
Kumaravadivel

and Evans

Jank and

Hafner

Gonzalez

et al.

Kambayashi

and Chihara

r (�A), e (K) r (�A), e (K) r (�A), e (K) r (�A), e (K)

2.76, 957.3 2.59, 759.5 2.54, 949.5 2.59, 1038.2

3.21, 677.4 3.12, 612.6 3.23, 429 3.29, 541.2

4.03, 574.7 4.18, 312.6 3.88, 474.5 4.11, 507

4.33, 519.5 4.58, 279.5 4.16, 483.5 4.52, 409.4

4.63, 541.6 5.03, 211.6 4.66, 515.5 5.08, 466
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at which the potential vanishes, r0, as the characteristic

energy and distance parameters, respectively. The ra-

tionale and the justification of this choice is presented

here.

To motivate the discussion, we briefly discuss the
work of Helfand and Rice [4] who assumed the inter-

atomic potential u to be of the form

uðrÞ ¼ ef ðr=rÞ; ð1Þ
where r is the inter-atomic distance and the parameters e
and r have the units of energy and length, respectively.

Using the statistical-mechanical expressions for the dif-

fusion coefficient (D) and viscosity ðlÞ in terms of the

ensemble average of the corresponding autocorrelation

functions, they obtained the following relations:

D� ¼ D�ðT �; q�Þ ð2Þ
and

l� ¼ l�ðT �; q�Þ; ð3Þ
where

D� ¼ D
r

ffiffiffiffi
m
e

r
; l� ¼ lr2ffiffiffiffiffiffi

me
p ; T � ¼ kBT=e; q� ¼ qr3:

ð4Þ
In Eq. (4), m is the mass of an atom, T is the absolute

temperature, q is the number density (number of atoms

per unit volume) and kB the Boltzmann constant. The

starred (*) quantities are the dimensionless ones.

Clearly, the L-J potential

uLJðrÞ ¼ 4eLJ
rLJ

r

� �12
�

� rLJ

r

� �6
�
; ð5Þ

is of the same form as Eq. (1). Moreover, for the L-J

potential, the value of the potential at its minimum is

given by �eLJ and the inter-atomic distance at which the
L-J potential becomes zero is given by rLJ

uLJmin

�� �� ¼ eLJ; rLJ0 ¼ rLJ: ð6Þ

Thus, if the inter-atomic potential is of the L-J type then

the potential well-depth and the inter-atomic distance at

which the potential vanishes may be taken as the char-

acteristic energy and distance parameters, respectively,
to form the dimensionless quantities in Eq. (4).

However, as already pointed out above, L-J poten-

tials are not an accurate representation of interactions in

liquid metals. One may still use the dimensionless pa-

rameters in Eq. (4), if the liquid metal potential can be

expressed in the form of Eq. (1) with the e and r not

necessarily having the same significance, indicated by

Eq. (6), as they do for the L-J potential. Alternately, one
may start with the liquid metal potential and carry out

an analysis similar to that of Helfand and Rice and

extract the appropriate dimensionless parameters. Both

of these avenues are complicated by the lack of conve-

nient-to-use, accurate, analytical expressions for liquid
metal potentials. In this work, we assume that juminj and
r0 are appropriate characteristic parameters for liquid

metals too, at least as a first-order approximation. The

rationale for this choice is discussed in detail below.

As already remarked in Section 1, in case it is not
feasible to extract the dimensionless parameters from a

mathematical equation, one may carry out a dimen-

sional analysis of the relevant quantities. For instance,

for viscosity we may consider the set

l;q; T ;m; kB; r; ef g:
At this stage e and r are simply any set of characteristic

energy and distance parameters. Of course, the implicit

assumption is that they are sufficient to characterize the

interaction, an assumption which would be examined

later. Using standard techniques of dimensional analysis
[3], three independent dimensionless parameters may be

formed. It may be noted that this does not imply the set

of dimensionless parameters is unique but it can be

shown that that the set in Eq. (4)

l�;q�; T �f g
is a valid set. A similar case can be made for the diffu-

sion coefficient as well. Dimensional analysis, however,

does not specify exactly what e and r are. They are

usually chosen to be juminj and r0 probably because these
are the two most easily recognizable and extractable

features of the potential. A further motivating factor is

that such a choice has a rigorous basis at least for L-J

potentials. However, a fundamental reason is the finding

[5] that the potentials of alkali metals near their melting

points collapse into the same curve when they are scaled

by juminj and r0. This means that the potential is of the

form given by Eq. (1) with e ¼ juminj and r ¼ r0. Then,
as pointed out earlier, the dimensionless groups given by

Eq. (4) follow rigorously.
3.2. Discussion of parameter sets

Having made the above choice, it is now worthwhile

to briefly examine the available literature on these pa-

rameters. In this work, we have considered the following
sets of parameters:

(a) The parameters of Chapman [1] obtained from vis-

cosity data.

(b) The set frGS; kBTmg.
Here, Tm is the melting temperature [6] and rGS is the

Goldschmidt diameter [7]. One distinct advantage of this

set is that these are standard parameters and readily

available for allmetals. Thus, it wouldbe interesting to see
if they do as well or better than the other sets of param-

eters. Moreover, the effectiveness of kBTm as a scaling

parameter has been observed for liquid alkali metals [5].

In addition, we considered parameters obtained from

first principles calculations of the effective inter-ionic

potentials by
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(c) Shyu et al. [8] (from which Ranganthan and Pathak

[9] and Balucani et al. [5] have extracted the charac-

teristic parameters).

(d) Hafner and Heine [10].

(e) Kumaravadivel and Evans [11].
(f) Jank and Hafner [12].

(g) Gonzalez et al. [13,14].

(h) Kambayashi and Chihara [15].

For reasons to be outlined below, we restricted our-

selves primarily to simple metals as far as first principles

calculations are concerned. While in (c)–(f), pseudo-

potential theory is employed, in (g) and (h), the frame-

work of density functional theory is used.
The two crucial inputs to a pseudo-potential calcu-

lation of the inter-ionic potential are a model for the

pseudo-potential and an expression for the exchange-

correlation correction to the dielectric constant. In (c)

and (d) a simple, local pseudo-potential, called the

empty-core potential is used while in (e) and (f), a more

rigorous non-local optimized potential is employed. It

has been pointed out [11] that the empty core model may
be adequate for alkali metals provided a suitable choice

of the core radius is made. While Shyu et al. find the

radius by fitting to neutron scattering data, Hafner and

Heine use the solid-state band structure energies for this

purpose.

As regards the exchange-correlation correction fac-

tor, the expression of Ichimaru and Utsumi [16], adop-

ted by Hafner and Heine, satisfies the consistency
conditions in compressibility sum rule and the short

range correlation. In this respect, it is superior to the

correction function of Singwi et al. [17] or its refined

version due to Vashishta and Singwi [18] used in (c) and

(e), respectively. However, Jank and Hafner [12] found

very little difference in the inter-ionic potential calcu-

lated using the Ichimaru–Utsumi and the Vashishta–

Singwi corrections.
In the pseudo-potential framework, which is widely

regarded as applicable for sp-metals, the liquid metal is

treated essentially as a one-component fluid of ions with

the electrons taken into account only in the determina-

tion of the effective inter-ionic potential. Moreover, the

electron–ion correlation is regarded as weak thereby

enabling the use of linear response theory. The impor-

tance of non-linear effects have been pointed out even
for simple metals [19]. These effects can be taken into

account within a density functional theory framework

employed by Chihara and co-workers ([15, and refer-

ences therein]). In this framework, the liquid metal is

regarded first as an electron–ion mixture and expres-

sions obtained for the electron–ion and ion–ion corre-

lation functions in terms of effective potentials which are

in turn obtained by regarding the liquid metal as a nu-
clei–electron mixture. Though Gonzalez et al. [13] use a

similar framework, they introduce additional approxi-

mations to simplify their calculations. Further, their
expressions for the local field corrections are different

from those used by Chihara and co-workers.

Table 1 displays the parameters of alkali metals for

(a)–(h). In this table, following convention, we denote

juminj and r0 by e and r, respectively. It is clear from the
table that the e and r values reported by various authors

differ widely. This reflects the sensitivity of these pa-

rameters in particular and the potential in general to the

inputs required for computing the potential. For in-

stance, Kumaravadivel and Evans [11] show the effect of

the choice of the pseudo-potential as well as that of the

exchange correlation correction factor on the potential.

For liquid sodium, they show that a variation of as high
as 100% is possible in the well-depth. For polyvalent

metals such as Al, the sensitivity to the correction factor

is even higher. Apart from quantitative discrepancy, one

may find widely differing qualitative trends as well. For

instance, in the case of alkali metals, while the calcula-

tions of Shyu et al. [8] and Jank and Hafner [12] show a

decrease in the well-depth as one moves from Li to Cs,

the opposite trend is reflected by the calculations of
Hafner and Heine [10]. The calculations of Kumarav-

adivel and Evans [11] and Kambayashi and Chihara [15]

display the former trend from Li to Rb while those of

Gonzalez et al. [14] follow the latter trend from Na to

Cs.

Another point worth noting is that, for liquid metals,

the parameters e and r are dependent on the tempera-

ture (and hence on the density). Kumaravadivel and
Evans have pointed out that large errors (as large as a

factor of 5) may result in using parameters evaluated for

the solid state especially for metals with high melting

points. Sharma and Tankeshwar [20] have reported

calculations for liquid Rb in which they report an in-

crease by a factor of two of the well-depth over a 1500 K

temperature range. Over this range r decreases by about

10%. As regards the parameters reported in Table 1,
except for those of Hafner and Heine, all others are

based on liquid state close to the melting temperature.

Due to the lack of sufficient information, it is perhaps

reasonable to assume them to hold for all temperatures

in the present calculations. Further, the temperature

range of the data that considered in this work is by and

large within 200–300 K.

In spite of the above limitations, it would be worth-
while to investigate the effectiveness of the above pa-

rameters as we are more interested at this stage in

qualitative trends. Further, as shown below, even

though two sets of parameters might be different from

one another, it is possible that there might be some kind

of internal consistency within each set that leads to

satisfactory results as far as the applicability of CST is

concerned.
As mentioned above, we have restricted ourselves to

simple or sp-bonded metals as they are the most widely

studied. A notable exclusion is that of transition metals
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for which calculations are not as widely reported as for

the simple metals. Further, the presence of the d-band

electrons in the transition metals requires a different

approach to the calculation of their pair potentials.

Thus, though values of e and r are available [21] for
some common transition metals such as Fe, Co, Ni, etc.

we did not include them in our consideration as the

authors, for the reason cited above, did not report cal-

culations for the simple metals. Thus, the simple and

transition metals could not be treated within the same

framework. In fact, this qualitative difference in ap-

proach for different classes of metals, and here we may

also mention noble metals and rare-earth metals [22,23],
suggests that it may not be physically realistic to expect

all the liquid metals to obey a single CST. Nevertheless

for parameter sets (a) and (b) above, the applicability of

CST has been tested here for a wider range of metals.
4. Results and discussion

4.1. Outline of calculations

Evidently, given the functional form of Eqs. (2) and

(3), three-dimensional plots are needed to check the

applicability of CST for viscosity and diffusivity. How-

ever, by assuming a dependence on say, q�, we may re-

solve this problem. For this purpose, the result of

Chapman [1] is used here who found, theoretically, a
quadratic dependence of l� on q�. However, Chapman’s

definition of l� is different from ours although his defi-

nitions of q� and T � are the same as that given by Eq.

(4). In fact, the two definitions of reduced viscosity are

related by

l� ¼ l�
ch

ffiffiffiffiffi
T �

p
: ð7Þ

Thus, Chapman’s hypothesis of density dependence

implies

l�
ch ¼ q�2fchðT �Þ: ð8Þ

From Eqs. (7) and (8), we obtain

l� ¼ l�ðT �; q�Þ ¼ q�2
ffiffiffiffiffi
T �

p
fchðT �Þ ¼ q�2f ðT �Þ;

where

f ðT �Þ ¼ fchðT �Þ
ffiffiffiffiffi
T �

p
: ð9Þ

Thus, a plot of l�q��2 versus T � should yield the uni-

versal function f if CST were valid. What we have

shown here is that if l�
chq

��2 is a universal function of T �,

then so is l�q��2 as defined in this work. Further, Eq. (9)

gives the precise relation between the two universal
functions. For the diffusivity, we assume an inverse

square dependence of D� on q�. This is based on the

Stokes–Einstein relation [3] which points to an inverse

relation between diffusivity and viscosity. No doubt,

these are crude approximations; but we found that by
varying the dependence on the reduced density for both

D� and l�, there was no significant change in the results,

though in some cases, especially for diffusivity, a weaker

density dependence was found to give better results.

While it would be profitable to undertake a more de-
tailed study of the nature of the density dependence for

both viscosity and diffusivity, we do not pursue it here.

We now briefly describe our calculations. Experi-

mental data on temperature dependence of the diffu-

sivity for about 16 liquid metals have been culled from

the literature. On the other hand, viscosity data is more

widely available and therefore we have used data for 23

metals. Detailed references for the data can be found in
[24]. For metals not listed there, the data were taken

from [25]. Then using the potential parameters that we

have considered for this investigation, the dimensionless

quantities were calculated using Eq. (4). The density at a

given temperature of each metal studied herein is cal-

culated using the following expression due to Crawley

[6]:

q ¼ aþ bðT � TmÞ:

Crawley has tabulated the a and b values for a large

number of metals. It may be noted that potential pa-
rameters in most cases were available only for alkali

metals, the calculations of Kumaravadivel and Evans

[11] being an exception. Although potentials for non-

alkali simple metals were provided by Hafner and Heine

[10], we could not use them either due to lack of vis-

cosity and/or diffusivity data or due to the difficulty in-

volved in obtaining the characteristic parameters from

the plots provided. However, Chapman’s parameters are
available for a wider range of metals while the set

frGS; kBTmg is known for nearly all metals.
4.2. Alkali metals

The main results of this work are summarized in Figs.

1–4. Since the values of the required parameters for al-

kali metals are available in all the sets (a)–(h), these are
considered separately in Fig. 1(a)–(e) for diffusivity and

in Fig. 2(a)–(c) for viscosity. Of course, they have a

special significance in belonging to the same group in the

periodic table.

Both Chapman’s parameters (Figs. 1(a) and 2(a)) as

well as the set frGS; kBTmg (Figs. 1(b) and 2(b)) give a

reasonably good fit of diffusivity as well as viscosity data

for all alkali metals. This cannot be said of the param-
eters of Hafner and Heine (Fig. 1(d)) and of Kuma-

ravadivel and Evans (Fig. 1(e)) where Li clearly does not

fit in. Similar behavior was obtained for these parame-

ters for viscosity as well. It is to be noted that though the

well-depth of the potentials shows opposite trends in

these two cases, the behavior of diffusivity and viscosity

from a CST viewpoint is similar. The results concerning
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Fig. 1. Plots of D�q�2 versus T � for the various parameter sets. Figures (a)–(e) correspond, respectively, to the parameter sets (a)–(e) for alkali metals.
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viscosity using Chapman’s parameters are not surprising

since the parameters themselves were obtained from

viscosity data. However, as pointed out before, Chap-
man’s expression for the reduced viscosity, obtained

from kinetic theory, is slightly different from the one

used here.

Regarding Li, differing perceptions exist. Balucani

et al. [5] exclude Li from consideration due to its

‘‘quantum character’’. Anomalous behavior of Li has

also been pointed out by Day et al. [26] and Gonzalez

et al. [13]. Also, Li differs from other alkali metals in
having no p-electrons in its core. But Ranganathan and

Pathak [9], using the parameters of Shyu et al. [8], cal-

culated D� at the melting point for Na, K, Rb and Cs

and found them to be close to 0.03. They then assumed

this value to hold for Li at its melting point and found

the resulting value of the diffusivity of Li agreed very

well with the corresponding experimental value. The

present results show that the parameters of Shyu et al.
[8] give a good fit for all alkali metals (Figs. 1(c) and

2(c)). This despite the fact that both the pseudo-poten-

tial as well as the exchange-correlation model used by

them are not as refined as those used in some of the
other parameter sets considered here. While they point

to the uncertainties in potential well-depth that can oc-

cur when the empty core radius is determined from
neutron scattering data, it is shown here that their pa-

rameters yield a corresponding states model for trans-

port coefficients of liquid alkali metals. This result also

correlates with the corresponding states behavior ob-

served for the potentials of Shyu et al. when e and r are

used as scaling parameters [5]. Furthermore, using these

potentials, Balucani et al. [27] have observed scaling

behavior for diffusivity and viscosity from simulations
near the melting point of the alkali metals.

For the parameters of Jank and Hafner [12], three

distinct clusters of points ({Li, Na}, {K, Rb}, Cs) are

found for both diffusivity and viscosity. Thus, no cor-

responding states behavior can be found even among

alkali metals. Similar behavior was found for the pa-

rameters of Gonzalez et al. [13,14] for diffusivity but

here the distinct clusters were those of {Li, Cs}, {K, Rb}
and {Na}. For viscosity, the scatter was even more. It

may be noted here that Jank and Hafner [12] as well as

Gonzalez et al. [14] report that the potentials of K, Rb

and Cs follow approximately the law of corresponding
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Fig. 1. (continued )
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states with the latter specifically reporting a deviation

for Na. To some extent, it was reflected in our results as
the points for K and Rb cluster together in both cases

and those for Na stand out.
The parameter set of Kambayashi and Chihara [15]

showed results very similar to those of Gonzalez et al.,
only the points for Na, K and Rb cluster together

more closely. This behavior was found to be more
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pronounced for viscosity. Interestingly, Kambayashi

and Chihara [15] do not observe a corresponding states

behavior for their potentials.

Thus, it is clear from the above results that whether a

‘‘universal’’ relation exists between the reduced trans-

port coefficients and the reduced density and tempera-

ture depends on the particular parameter set used. Thus,

we may classify those sets that suggest a universal rela-
tion, as ‘‘desirable’’ from a CST viewpoint. This does

not mean that the other parameter sets have to be re-

jected altogether but only that they are not suitable

within the context of CST. As we have pointed out

above, some of the parameter sets that are the result of

apparently more rigorous calculations of inter-ionic

potentials do not have the scalable property with respect

to r and e.
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4.3. Non-alkali metals

In the case of non-alkali metals, it may be seen that

Chapman’s parameters (Fig. 3) give a reasonably good

behavior of diffusivity for most metals considered, Zn

and Hg being exceptions. Noting that the potential pa-

rameters were obtained from viscosity data in this case,

we may point to a similar result [24] where hard sphere
diameters obtained from viscosity data for liquid metals

yielded as good a description of their diffusivity as any

other hard sphere diameter prescription. As for viscos-

ity, the good correlation displayed by Chapman’s pa-

rameters (Fig. 4) is not surprising as in fact, the

parameters [1] were obtained from a fit to the viscosity

data.

As for the parameters of Kumaravadivel and Evans,
no universality was observed when more metals were

included (as compared with alkali metals alone). The
same can be said for the parameter set ðrGS; kBTmÞ,
where a wide range of metals were included. This set

which was found to work well for alkali metals alone is

unsatisfactory for the wider range of metals considered.

4.4. Reliability of model predictions

Since we have used experimental data to arrive at our
conclusions, it is pertinent to examine the effect of taking

into account experimental uncertainties in viscosity and

diffusivity. Generally, an uncertainty of up to 10% is

expected for viscosity while for diffusivity experimental

errors can be as high as 25%. A thorough examination

of this problem is no doubt of utmost importance and in

fact deserving of a separate study. This would require a

critical examination of the various sources from which
we have obtained the data, the methods employed to

experimentally determine the transport coefficients in
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each and an estimation of the resultant error. However,

an estimate of the reliability of our predictions may be

made by a statistical analysis [28]. The results of such an

analysis are presented below.

For viscosity, we took the case of parameter set (b)
frGS; kBTmg where we seem to get the best results for

viscosity correlation (Fig. 2(b)). We developed a corre-

lation of the form

l�q��2 ¼ A expðBT �Þ:
The fit was reasonably good ðR2 ¼ 0:935Þ considering
the number of data points (42) used [28]. A linear least

squares fit between lnðl�q��2Þ and T � gave the following

values for the parameters:

lnA ¼ 2:3296� 0:052; B ¼ �1:0294� 0:043:

Further, the standard deviation turns out to be 0.053.

This corresponds to a fit involving lnðl�q��2Þ thus in-

dicating a 5.3% uncertainty in the viscosity.

For diffusivity, we chose the parameter set of Shyu

et al. (Fig. 1(c)) and based on the results obtained sought

a linear relation of the form

D�q�2 ¼ A0 þ B0T �:

A least squares fit ðR2 ¼ 0:91Þ gave the following values:

A ¼ �0:0704� 0:006; B ¼ 0:1158� 0:006:

The standard deviation here is 0.0036 but this corre-

sponds to a fit of D�q�2 unlike in the case of viscosity

where lnðl�q��2) was involved. Since the range of D�q�2

is from 0.03 to 0.07, this points to an uncertainty of

about 5–12% in D.

Thus, we see that the uncertainty range for the pa-

rameters of our model fits are quite small, less than 5%

for viscosity and about 10% for diffusivity. That these

values are lower than the corresponding experimental

uncertainties should increase our confidence in the pa-

rameter sets for which CST was perceived as likely to
hold based on Figs. 1 and 2. Finally, it may be pointed

out that the form of the above correlations for the re-

duced viscosity and diffusivity were adopted solely for

the purpose of the statistical analysis and do not nec-

essarily have any theoretical basis.
5. Summary and conclusions

A study of the applicability of CST to the calculation

of diffusivity and viscosity of liquid metals has been

undertaken with particular emphasis on alkali metals.
This study differs from previous attempts where the

characteristic parameters were essentially treated as fit-

ting parameters and obtained from transport coefficient

data itself. Eight different sets of parameters have been

considered here in order to form the appropriate di-

mensionless variables, and six of them are obtained from
first principles calculations reported in the literature. An

important point is the wide variation in the character-

istic parameters obtained from the various calculations

as shown clearly in Table 1. Thus, it is clear that despite

great advances in this direction, consensus is still elusive.
Nevertheless, some of the parameter sets did result in a

reasonable correlation between the dimensionless

quantities at least for alkali metals. Wherever possible,

the results obtained here are correlated with the features

of these calculations. We have also attempted to provide

a rough estimate of the reliability of our predictions

given the experimental uncertainties in the viscosity and

diffusivity values used in this work.
For alkali metals, the use of the Goldschmidt diam-

eter as the characteristic distance parameter and kBTm as

the characteristic energy parameter works as well as any

other set of parameters considered. However, no uni-

versality behavior is found for this parameter set when

non-alkali metals are included. This is also true of the

few other parameter sets involving quantum mechanical

calculations where parameters were available for non-
alkali metals.

However, Chapman’s characteristic parameters ob-

tained from viscosity data provides a reasonable corre-

lation of diffusivity data for most but not all metals

studied. Inclusion of a wider range of metals and over a

larger temperature range is needed to test the efficiency

of this method. But from a more fundamental view-

point, it is not clearly established whether it is physically
realistic to expect all metals to obey a single CST, given

the qualitatively different features governing the ionic

and electronic structure of various classes such as simple

metals, transition metals, noble metals, etc. In fact, as

pointed out above, even among simple or sp-bonded

metals, we have found a reasonable degree of univer-

sality only for alkali metals. More extensive studies are

required to find out if a limited universality holds among
a particular class of metals.

Another aspect that requires further investigation is

the suitability of the potential well-depth and the inter-

ionic distance where the potential becomes zero as the

characteristic parameters. First, both of these quantities

are temperature dependent. It would be interesting to

see the effect of incorporating this temperature depen-

dence. Further, they are very sensitive to the inputs used
for the potential calculations. Despite these limitations,

reasonably satisfactory results were obtained for alkali

metals. Nevertheless, it would be worthwhile to find out

a more reliable set of characteristic parameters and also

to establish if two parameters alone are sufficient for

liquid metals. It is possible that a different set of char-

acteristic parameters might bring a wider range of

metals into a single CST. Finally, a more thorough
analysis of the density dependence of the transport co-

efficients would be fruitful to shed some light on some of

the underlying issues in these complex systems.
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