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Multiphase Equation of State for Carbon over Wide
Range of Temperatures and Pressures1

K. V. Khishchenko,2,3 V. E. Fortov,2 and I. V. Lomonosov4

A semiempirical equation-of-state model, which takes into account the effects
of polymorphic phase transformation and melting, is proposed. An equa-
tion of state is developed for graphite, diamond, and liquid phases of car-
bon, and a critical analysis of calculated results in comparison with available
high-temperature, high-pressure experimental data is made.

KEY WORDS: diamond; equation of state; graphite; liquid carbon; phase
diagram; shock Hugoniot.

1. INTRODUCTION

A knowledge of the thermodynamic properties and phase changes of mat-
ter in a wide region of states diagram is of fundamental as well as prac-
tical interest [1]. The multi-phase equation of state (EOS) of carbon over
the range from normal conditions to extremely high values of temperature
and pressure is required for numerical simulation of hydrodynamic pro-
cesses under conditions of high energy densities [1–3].

We propose a new semiempirical EOS model, which takes into
account the polymorphic phase transformation and melting effects. A
wide-range EOS for graphite–diamond–liquid carbon system is constructed
on the basis of the model developed. Calculated results are compared
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with available experimental data in a broad region of the phase diagram.
The most essential shock-loading and adiabatic-release experiments are
described.

2. EOS MODEL

According to the EOS model, the Helmholtz free energy for matter is
considered as a sum of three components,

F (V ,T )=Fc (V )+Fa (V ,T )+Fe (V ,T ) , (1)

describing the elastic part of the interaction at T =0 K (Fc) and the ther-
mal contributions by atoms (Fa) and electrons (Fe). The first and third
components in Eq. (1) have a different form for graphite and diamond,
but the second is defined by identical functional relationships for both
solid phases of carbon. The free energy F of liquid carbon has the form of
Eq. (1) with the same expressions for terms as the thermodynamic poten-
tial of the liquid phase in the EOS model [1].

The elastic component of energy for the diamond phase in the com-
pression region (σc �1, where σc =V0c/V , V0c is specific volume at P =0,
T =0 K) is given in the form [4],

Fc (V )=E0c +3V0c

6∑

i=1

ai

i

(
σ

i/3
c −1

)
, (2)

providing for the condition

Fc (V0c)=E0c. (3)

Also, the following additional conditions must be satisfied along the cold
compression curve at σc = 1:

Pc (V0c) = −dFc/dV =0, (4)

Bc (V0c) = −V dPc/dV =B0c, (5)

B ′
c (V0c) = dBc/dPc =B ′

0c, (6)

where Pc is the pressure, Bc is the bulk modulus, and B ′
c is its pressure

derivative. Equations (4)–(6) are complemented by the requirement of a
minimal root-mean-square deviation of the pressure in the range σc =30–
1000 from calculated values of P TFC

c obtained using the Thomas–Fermi
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model with quantum and exchange corrections [5]. This results in the
problem of finding a conditional extremum of the functional,

S (ai, λ,µ, η) =
N∑

n=1

gn

[
1−Pc (ai, Vn)/P

TFC
c (Vn)

]2 +λPc (ai, V0c)

+µ [Bc (ai, V0c)−B0c]+η
[
B ′

c (ai, V0c)−B ′
0c

]
, (7)

the solution of which gives the value for the coefficients ai . The values of
parameters V0c, B0c, and B ′

0c are chosen by means of iterations so that the
value of the specific volume, V =V0, and the isentropic bulk modulus,

BS =−V
(
∂P

/
∂V

)
S
=BS0, (8)

and its derivative with respect to pressure,

B ′
S = (

∂BS

/
∂P

)
S
=B ′

S0, (9)

determined from the results of dynamic measurements, would be satisfied
under normal conditions, P =0.1 MPa and T =293 K.

The cold energy of the diamond phase in the rarefaction region (σc <

1) is represented by a polynomial of the form,

Fc (V )=V0c

[
am

(
σm

c /m−σ l
c/l

)
+an

(
σn

c /n−σ l
c/l

)]
+Esub, (10)

which leads to the correct value of the sublimation energy Esub in the case
of V → ∞ [6] and satisfies Eq. (4). Equations (3), (5), and (6) leave two
fitting parameters, n and l, in Eq. (10).

The volume dependence of the elastic component of energy for the
graphite phase over a whole range of compression ratio, σc, is expressed
in the form of Eq. (10) simplified in such a way that l = n while taking
into account Eq. (5):

Fc (V )= B0cV0c

m−n

(
σm

c /m−σn
c /n

)+Esub. (11)

In this case, normalizing Eq. (3) with E0c = 0 gives n=B0cV0c(mEsub)−1,
and the requirement of Eq. (6) determines the relation m = B ′

0c − n − 2.
Therefore, a choice of values of V0c, B0c, and B ′

0c defines all parameters
in Eq. (11).

The lattice contribution to the free energy of the solid phases is
defined by excitation of acoustic and optical modes of thermal vibrations
of atoms:
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Fa (V , T )=F acst
a (V , T )+

3(ν−1)∑

α=1

F
opt
aα (V, T ), (12)

F acst
a (V , T )= RT

ν

[
3 ln

(
1−e−θacst/T

)
−D(θacst/T )

]
−βacst

T 2/θacst

eθacst/T −1
,(13)

F
opt
aα (V, T )= RT

ν
ln

(
1− e−θ

opt
α /T

)
−βoptα

T 2/θ
opt
α

eθ
opt
α /T −1

, (14)

where R is the gas constant, ν is the number of atoms in an elementary
cell of the lattice, D is the Debye function [7],

D (x)= 3
x3

∫ x

0

t3dt

et −1
, (15)

and θacst and θ
opt
α are the characteristic temperatures of the acoustic and

optical modes of phonon spectrum [8, 9],

θacst (V )/θacst
0 = θopt

α (V )/θ
opt
0α

= σ 2/3exp

{
(γ0 −2/3)

σ 2
n + ln2σm

σn

arctg
[

σn lnσ

σ 2
n − ln(σ/σm)lnσm

]}
,

(16)

where x = ln σ , σ = V0/V , γ0 is the value of the Grüneisen coefficient
under normal conditions, and σm and σn are free parameters, chosen from
the requirement of the optimum description of experimental data on ther-
mal expansion of studied substances [10]. The values of coefficients θacst

0
and θ

opt
0α

are defined from measured values of the isobaric heat capacity
CP of graphite and diamond at normal pressure and various temperatures
[11, 12].

The last terms in Eqs. (13) and (14) take into account the effects of
anharmonicity of thermal lattice vibrations. These terms are exponentially
small at low temperatures and provide for behavior of heat capacity, CV −
3R ∼T 2 at T →∞ [11]. The requirement that the contributions of anhar-
monicity terms for all acoustic and optical vibrations modes at T →∞ are
equal to each other lets us introduce a coefficient ξa, such that

βacst =3ξaθ
acst2

0 /ν, βoptα = ξaθ
opt2

0α
/ν. (17)

The value of ξa for graphite is found from high-temperature data for
enthalpy under normal pressure [13]. The value of ξa for diamond is
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determined from experimental data on the equilibrium boundary between
graphite and diamond [14–17].

The electron contribution to the free energy of diamond, which is a
dielectric with the energy gap between the valence and conduction bands
�0 �5.5 eV [18], is negligible in comparison with Fa at temperatures T �
�0/2k (where k is the Boltzmann constant). Therefore,

Fe (V , T )=0 (18)

for the diamond phase.
The electronic component of the free energy of the graphite phase is

given by the expression,

Fe (V , T )=−1
2
β0T

2σ−γ0 , (19)

where β0 is the coefficient of electronic heat capacity at T =0 K [11].
The coefficients of EOS that optimally generalize the available experi-

mental and theoretical data for diamond within the framework of Eqs. (1),
(2), (10), and (12)–(18) are as follows: V0 = 0.2845, V0c = 0.28443, E0c =
0.31, a1 = −153.381, a2 = −1486.526, a3 = 2161.515, a4 = −591.265, a5 =
72.861, a6 = −3.204, am = 329.218, an = −23.108, m = 2.9164, n = 9, l = 1,
Esub =56, ν =8, R = 0.69224, θacst

0 =1.1, θ
opt
0α

=1.49, ξa =0.00088, γ0 =0.9,
σm =0.855, and σn =0.1.

The coefficients in Eqs. (1), (11)–(17), and (19) providing an optimum
description of the available thermodynamic information for graphite are
as follows: V0 = 0.4415, V0c = 0.44102, B0c = 35.597, m = 7.238, n = 0.039,
Esub =56, ν =2, R =0.69224, θacst

0 =1.05, θ
opt
0α

=1.8, ξa =0.001, γ0 =0.243,
σm =0.6, σn =1, and β0 =0.00117.

The units of measurement for the listed coefficients correspond to the
original units E =1 kJ·g−1, V =1 cm3·g−1, and T = 1 kK.

3. THERMODYNAMIC PROPERTIES OF CARBON

The compressibility of graphite at normal temperature was investi-
gated experimentally in X-ray diffraction measurements using supported
anvils [19] and diamond-anvil cells [20, 21] in combination with different
pressure scales up to P � 20 GPa. Calculated isotherm of T = 293 K for
graphite in comparison with experimental data from Refs. 19–21 is pre-
sented in Fig. 1. Shock-wave point from Ref. 23, which corresponds to
maximum compression of highly oriented graphite before its fast transfor-
mation to diamond, is also shown in Fig. 1.

The adequacy of the proposed form of contribution of thermal lattice
vibrations to the thermodynamic potential is illustrated in Fig. 2, in which
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Fig. 1. Pressure versus relative compression of graphite at T =
293 K. Solid line corresponds to this work; dashed line is calcu-
lated isotherm T = 0 K from Ref. 22; ρ0G =2.265 g · cm−3. Exper-
imental data: 1, Ref. 19; 2, Ref. 20; 3, Ref. 21; 4, Ref. 23.

Fig. 2. Isobaric heat capacity versus temperature of graph-
ite (a) and diamond (b) under atmospheric pressure, R =
0.69224 J·g−1·K−1. Experimental data: 1, Ref. 11; 2, Ref. 12.
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Fig. 3. Specific enthalpy versus temperature of graphite under
atmospheric pressure. Solid line corresponds to calculations tak-
ing into account the anharmonicity effects; dashed line denotes
results without these effects; open circles represent experimental
data from Ref. 13.

the calculated values of the isobaric heat capacity of graphite and dia-
mond at normal pressure and moderate temperatures are compared with
experimental data [11, 12]. Results of enthalpy calculations for graphite
in comparison with high-temperature data from Ref. 13 are presented in
Fig. 3. The atmospheric isobar of graphite enthalpy calculated with ξa =0
in Eq. (17) is shown in Fig. 3 to demonstrate the influence of the anhar-
monicity effects on the EOS of solid carbon at high temperatures.

Thermodynamic properties and phase changes of graphite and dia-
mond at high pressures and temperatures are investigated in dynamic
experiments in detail.

Methods of shock and adiabatic release waves diagnostics are based
on the use of the relationship between the thermophysical properties of
the medium under study and the hydrodynamic characteristics of the flow
of matter observed experimentally [24]. Traditionally, one attempts to use
self-similar solutions of a stationary shock-wave type and of centered
Riemann-expansion-wave type describing the conservation laws in a sim-
ple algebraic or integrals form [25]. At a stationary shock discontinuity
passing through a substance, the laws of conservation of mass, momen-
tum, and energy must be satisfied in the shock-wave front [24]:
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V = V00
Us −Up

Us
, (20)

P = P0 + UsUp

V00
, (21)

E = E0 + 1
2

(P0 +P) (V00 −V ) , (22)

where V00 is initial specific volume of sample, P0 and E0 are initial
values of pressure and specific internal energy, Us and Up are shock and
particle velocities, and V , P , and E are specific volume, pressure, and spe-
cific internal energy, respectively, behind the shock-wave front. The energy
conservation law, Eq. (22), is the well known Hugoniot equation [24]. In
the experiments for the determination of the isentropic expansion curve of
a shock-compressed substance with VH, PH, and EH, the corresponding
states in an expansion wave are described by the Riemann integrals [24],

V = VH +
∫ PH

P

(
dUp/dP

)2
dP , (23)

E = EH −
∫ PH

P

P
(
dUp/dP

)2
dP , (24)

taken along the measured isentrope P =P(Up).
Using the EOS, for example, in a thermodynamically complete form,

P =− (∂F/∂V )T =P (V, T ) and E =F −T (∂F/∂T )V =E (V, T ) , (25)

lets one to calculate the characteristics of matter in waves of shock com-
pression and adiabatic release. For experiments under initial conditions of
P0 =0.1 MPa and T0 =293 K, the initial volume of sample is varied: V00 =
V0, in a case of solid samples, and V00 >V0, in a case of porous samples;
E0 =E(V0, T0), for any value of V00 [24]. Taking into account these initial
parameters, Eqs. (22) and (25) define a relationship of V (P ) and T (P ) for
shock-compressed sample. The hydrodynamic characteristics are obtained
from Eqs. (20) and (21),

Us = V00

√
P −P0

V00 −V
, (26)

Up =
√

(P −P0) (V00 −V ). (27)

For experiments with reflected shock waves, the initial parameters V00, P0,
and E0 in Eqs. (20)–(22) correspond to states of matter behind the first
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shock wave [25]. For experiments with adiabatic release waves, the thermo-
dynamic parameters of substance are defined by the condition,

S =− (∂F/∂T )V = const, (28)

and an increase of particle velocity is calculated from the integral,

Up =UH +
∫ V

VH

(−∂P/∂V )
1/2
S dV , (29)

where UH corresponds to initial velocity of flow behind the front of the
first shock-compression wave.

Fig. 4. Shock Hugoniots, plotted as pressure versus particle
velocity, of diamond and graphite samples with initial densities
ρ00 = 1.87 (a, c), 2.02 (b), 1.789 (d), 1.011 (e), 0.607 (f), and
0.56 g · cm−3 (g). Solid and dashed lines denote results of calcu-
lation for diamond and graphite, respectively. Experimental data
for diamond (1, 2) and graphite (3–5) samples: 1 and 3, Ref. 26;
2, Ref. 27; 4, Refs. 29 and 30; 5, Ref. 31.
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As follows from Figs. 4 to 6, the multi-phase EOS constructed for car-
bon adequately describes the experimental data for graphite and diamond
of different initial densities [23, 26–32] over the entire range of dynamic
characteristics generated in shock-loading and adiabatic-release waves.

An analysis of the results of measurements of sound velocity in shock
compressed graphite with initial density ρ00 =V −1

00 = 2.2 g · cm−3 [33] indi-
cates that carbon is in the solid diamond phase at pressures in the range
80–143 GPa. On the calculated shock Hugoniot of graphite with ρ00 =
2.2 g · cm−3, melting of diamond begins at P �150 GPa; this value is con-
sistent with experimental data [33].

The phase diagram of carbon calculated on the basis of the devel-
oped EOS is shown in Fig. 7. It reveals a region of states realized in the

Fig. 5. Shock Hugoniot (a), curves of second shock compression
(b–d), and release isentropes (e–h), plotted as pressure versus par-
ticle velocity, of graphite samples with initial density ρ00 = 1.87 g ·
cm−3. Solid and dashed lines denote results of calculation for
diamond and graphite, respectively. Data from experiments with
direct shock (1–4) and reflected shock and release (5) waves: 1 and
5, Ref. 26; 2, Ref. 27; 3, Refs. 29 and 30; 4, Ref. 31.
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Fig. 6. Pressure versus relative compression of carbon at high
pressures. M is diamond melting region; (a)–(c) are shock
Hugoniots of carbon samples with initial densities ρ00 = 3.51 (a),
2.235 (b), and 1.9 g · cm−3 (c); ρ0D = 3.515 g · cm−3. Solid lines
denote results of calculation with taking into account the melting
effects; dashed line corresponds to metastable diamond. Experi-
mental data from measurements with diamond (1, 2) and graphite
(3, 4) samples: 1 and 2, ρ00 = 3.51 and 1.9 g · cm−3, respectively,
Ref. 27; 3, ρ00 = 1.85 g · cm−3, Ref. 28; 4, ρ00 = 2.235 g · cm−3,
Ref. 32.

dynamic experiments with traditional explosives systems [26, 27, 31] and a
two-stage light-gas gun [33]. As can be seen, these shock-wave data corre-
spond to both solid and liquid phases of carbon.

4. CONCLUSION

The multi-phase EOS we have developed for carbon provides a con-
sistent representation of the available experimental data, and it can be
employed effectively in numerical simulation of hydrodynamic processes at
high energy densities.
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Fig. 7. Phase diagram of carbon. M is diamond melting curve;
(a)–(g) are shock Hugoniots of carbon samples with initial den-
sities ρ00 = 3.51 (a), 3.191 (b), 2.2 (c), 2.02 (d), 1.87 (e), 1.789
(f), and 0.56 g · cm−3 (g). The level of pressures realized in exper-
iments with diamond (1–3) and graphite (4, 5) samples: 1 and 4,
Ref. 26; 2, Ref. 27; 3, Ref. 31; 5, Ref. 33.
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