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ABSTRACT 

This review examines current approximations and approaches that underlie the evaluation of 

transport properties for combustion modeling applications.  Discussed in the review are: the 

intermolecular potential and its descriptive molecular parameters; various approaches to 

evaluating collision integrals; supporting data required for the evaluation of transport properties; 

commonly used computer programs for predicting transport properties; the quality of 

experimental measurements and their importance for validating or rejecting approximations to 

property estimation; the interpretation of corresponding states; combination rules that yield pair 

molecular potential parameters for unlike species from like species parameters; and mixture 

approximations. The insensitivity of transport properties to intermolecular forces is noted, 

especially the non-uniqueness of the supporting potential parameters.  Viscosity experiments of 

pure substances and binary mixtures measured post 1970 are used to evaluate a number of 

approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/ε, is 

emphasized since this is where rich data sets are available. When suitable potential parameters 

are used, errors in transport property predictions for pure substances and binary mixtures are less 

than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe;  

Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include 

(1) revisiting the supporting data required by the various computational approaches, and 

updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; 

(2) characterizing the range of parameter space over which the fit to experimental data is good, 

rather than the current practice of reporting only the parameter set that best fits the data; (3) 

looking for improved combining rules, since existing rules were found to under-predict the 

viscosity in most cases; (4) performing more transport property measurements for mixtures that 

include radical species, an important but neglected area; (5)  using the TRANLIB approach for 

treating polar molecules and (6) performing more accurate measurements of the molecular 

parameters used to evaluate the molecular heat capacity, since it affects thermal conductivity, 

which is important in predicting flame development. 
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I. Introduction 

I. 1. Background 

Transport properties such as viscosity, diffusion, thermal conductivity, and thermal diffusion 

(the so-called Soret effect) play a critical role in combustion processes just as chemical reactions 

and their underlying kinetic parameters are essential for combustion modeling; molecular 

transport is important as well. Flame profile shapes, flame velocities, and pollutant production 

are all affected by transport properties.   

Recent work by Middha et al. [1], Paul and Warnatz [2], Grcar et al. [3], and Brown and 

Revzan [4] has indicated the need for revisiting the approach to calculating the transport 

properties required to support combustion modeling. Sensitivity analysis by Brown and Revzan 

revealed that transport properties and their supporting potential parameters are as important in 

flame modeling as reaction rates.  Accurate flame modeling requires accurate chemical kinetics, 

transport properties, and thermochemistry. 

The combustion modeling community has recognized the importance of improving the 

modeling of chemical mechanisms associated with the combustion of different fuels, but has not 

directed similar attention to the treatment of molecular transport. Wakeham et al. [5] adeptly 

summarize recent efforts in transport research: ―there [was] considerable development in both 

transport property theory and experimentation between 1950 and 1970; between 1970 and 1986, 

these efforts were extended to more complex molecular systems, and currently the field has 

stagnated with little new development and is driven by specific application needs.‖  

I. 2. Scope of review 

The purpose of this review is to examine current approximations and approaches that 

underlie the evaluation of transport properties and assess their adequacy for combustion 

modeling. We evaluate the accuracy of transport properties of pure substances and binary 

mixtures within the context of the current theoretical and experimental studies archived in the 

literature, considering the work of Kee et al. [6], Mason, Kestin and their many colleagues [7-

11], Paul and Warnatz [2],  Ern and Giovangigli [12-18] and the many others who measured and 

collected specific transport property data  at  a range of conditions (e.g., NIST data by Lemmon 

et al. [19]).  Also discussed are: the intermolecular potential and its descriptive molecular 
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parameters; various approaches to evaluating collision integrals; supporting data required for the 

evaluation of transport properties; the quality of experimental measurements and their 

importance for validating or rejecting approximations to property estimation; the interpretation 

of corresponding states; combination rules that yield pair molecular potential parameters for 

unlike species from like species parameters; and mixture approximations.  We focus on the 

intermediate temperature range 1 < T* < 10, where T* is kT/ε, k is the Boltzmann constant, T is 

the temperature, and ε is the depth of the potential well that characterizes intermolecular 

interactions, as we discuss later.  This temperature range is where rich data sets are available. We 

consider higher temperatures for a few species where data exist. The various approaches and 

approximations are evaluated by comparing calculated viscosities and diffusion coefficients of 

pure substances and binary mixtures relative to their experimental values.  We assume that the 

validation for calculated viscosities extends to calculated diffusion coefficients since viscosity 

measurements are more accurate than measurements of diffusion. Thermal conductivity, which is 

important in flame development, is treated briefly here and will be a subject of a later paper as 

will thermal diffusion.  In the former case, inelastic collisions are often important, and in the 

latter there is more dependence of the shape function of the molecular potential U(r), where U(r) 

= εφ(r/ζ) where φ is the shape function of the molecular potential. 

 

II. Intermolecular potentials for the calculation of transport properties: 

Considerable work has been devoted to the transport properties of rare gases, both as single 

gases and in mixtures.  A central force approximation is adequate for such systems.  For more 

complex molecular systems, the importance of orientation-dependent forces for transport 

property calculations depends on molecular properties such as dipole moments and on additional 

phenomena such as internal rotations. Accurate experimentally determined viscosities can be 

used to validate or challenge various approximations, including those that underlie evaluation of 

other transport properties.  

As discussed in Maitland et al [20], the intermolecular potential can be divided into regions 

based on the distance between the centers of mass of the interacting molecules. Forces acting at 

short range are repulsive, and result from the overlap of the molecular wave functions and from 

symmetry requirements imposed by the Pauli Exclusion Principle. At longer range electrostatic, 
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induction, and dispersion forces dominate.  Long-range electrostatic forces are present when 

each of the two molecules has a dipole or quadrupole moment, although the latter is not usually 

important for transport calculations. These forces are often called first-order orientation forces, 

and, when averaged over orientation with proper weighting, are attractive.  Induction forces 

occur when one or both molecules have a dipole moment: the dipole moment of one molecule 

distorts the electron charge distribution of the other molecule, and produces an induced dipole.  

Induction forces between the inducing and induced dipole are often called second-order forces. 

They depend on orientation, and are attractive when properly weighted and averaged over 

orientation.  Dispersion forces are always present for two molecules and are the only type of 

attractive force at longer range for two molecules when neither has a dipole moment. The 

electron density oscillates in time and space as a result of the constant motion of the electrons of 

each molecule. Dispersion energy results from the correlation between electronic density 

fluctuations in the two molecules. The induction force is usually the weakest of the three. 

The representation of the three types of potential energy used for most transport calculations 

is based on simplifying approximations.  We first consider a pair of polar molecules and treat the 

system as two interacting linear charge distributions. The leading term is the dipole-dipole 

interaction term 
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describes the orientation dependence of the energy, and θ1 is the angle that the vector 

associated with intermolecular distance makes with the vector associated with intramolecular 

distance.  The average energy over all orientations can be calculated assuming the two molecules 

are gaseous and free to rotate.  The probability of observing a configuration having a particular 

energy is proportional to a Boltzmann factor.  This leads to larger weighting factors for 

configurations of negative energy, renders the average negative and the potential energy 
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Since the average value of the potential energy decreases as 1/T, its importance is 

diminished at the higher temperatures associated with combustion.   

The induction force depends on the existence of a permanent dipole in at least one of the two 

molecules, and is also attractive. The induction energy associated with a simple molecule with a 

permanent dipole interacting with another molecule with static polarizability α’ is often 

approximated as   
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Averaging this over all orientations with Boltzmann weighting factors yields an average 

induction energy of:  
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Dispersion forces are always present between molecules regardless of whether or not the 

interacting molecules have permanent dipoles.  Dispersion forces are attractive, and include 

terms in r
-6

, r
-8, 

and r
-10

; however, in most cases only r
-6

 is relevant because the higher-order terms 

are small by comparison.  Using a simplified Drude model [21], where it is assumed that each 

molecule consists of one negatively charged and one positively charged particle, the energy 

arising from two oscillating dipoles, treated like harmonic oscillators, is given by: 
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 The origin of the dispersion energy in this case is purely quantum mechanical, and arises 

from the zero point energy of the oscillators.  

These simple models justify the assumption that the attractive energy at long range behaves 

like 1/r
6
.  The approximate energy for the long-range forces is: 
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Forces that act at shorter range result from the repulsion of incompletely screened nuclei, 

from the repulsion between electrons associated with the two molecules, and, less obviously, 

from the Pauli Exclusion Principle which imposes certain symmetry requirements on the 
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wavefunctions. The short range forces therefore include the well-known Coulomb, exchange, 

and overlap integrals; all of these forces are repulsive.  The multipole expansion used to 

represent the longer-range forces does not converge when the electron clouds of the two 

molecules overlap.  

Although valence bond theory is not the most successful for treating short range forces, it 

does illustrate the essential physics, and it can be used to examine the interaction of two H atoms 

at close range to explore the physics of this interaction and to understand why the repulsive force 

is often represented by a 1/r
n
  or an exp(-βr) form. In the  

1
Σ

- 
 repulsive state of H2, the potential 

energy at moderately short range indicates that it behaves as exp(-βr) at shorter distance and r
-n

 at 

larger distances.  It is easier to obtain an accurate representation at very short range where there 

is considerable overlap of the wavefunctions of the two molecules and at longer range where 

there is little, if no, overlap. The intermediate range, where overlap persists and the potential 

energy remains repulsive is a challenge.  The interaction energy in this range is not terribly large, 

and is evaluated numerically as the difference between the energy of the total system at a series 

of center-of-mass separations and the energy of the two atoms or molecules at infinite separation.  

Considerable accuracy is lost as a result of the subtraction.  

In practice, for calculating transport properties it is not necessary to calculate the 

intermolecular potential in detail.  Ultimately, what is needed to calculate transport properties is 

the value of collision integrals that are a function of the intermolecular potential but are not 

highly sensitive to its details. Approaches to calculating the collision integrals include using a 

simple functional form for the potential as a basis for the calculation, or using an empirically 

determined expression for the collision integrals themselves (see Mason and Uribe [11] for 

example). 

The most commonly used potential is the  Lennard-Jones (L-J) 12-6 potential, defined as: 
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The L-J potential requires only two parameters to characterize interacting molecules: a well 

depth  (which is the maximum attractive energy) and a characteristic distance  (which is the 

distance at which the potential is zero).  Various modifications of the L-J potential have been 

proposed, most of them involving the introduction of additional molecular parameters, but the L-
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J potential works remarkably well. Calculation of the collision integrals with this potential yields 

values that are nearly identical with the empirically determined values of Mason and Uribe, as 

shown in Figure 1.  

In a more modern vein, calculations of transport properties supported by ab initio potential 

energy surface calculations have been accomplished by a group of investigators from NASA 

Ames.  An early contribution was by Stallcop et al. [22], who evaluated transport cross sections 

and collision integrals for the H + N2 system.  The potential energy system was calculated using 

a complete active space self-consistent field/externally contracted configuration interaction 

(CASSCF/CCI) method. A long range dispersion energy approximated with a damping function 

and a Born-Mayer potential repulsive potential combined with the ab initio results was used to 

evaluate the transport properties.  Good agreement was obtained with experiment for the 

diffusion and viscosity coefficients at room temperature and atmospheric pressure. 

Partridge et al. [23][24] computed a potential energy surface and transport coefficients for H + 

H2 using an ab initio approach at short internuclear distances and filling in the intermediate 

distance between 4.0 and 8-10 atomic units with a more empirical approach.  At the larger 

separations their work showed that using a Born Mayer potential for the repulsive energy and 

treating the attractive energy as dispersion energy, computed with the damping function 

approach of Tang and Toennies [25], worked well.  Their surface was used to compute diffusion 

and viscosity coefficients by treating the scattering with the Infinite Order Sudden 

Approximation (IOSA).  They demonstrated the success of the IOSA by comparing its collision 

integrals with collision integrals computed using a close coupling result.  The results for H + H2 

viscosity and diffusion coefficients gave good agreement with experiment.   

 Other systems treated by the group that has relevance to combustion are H+ O2 [26]; H + H, H+ 

H2, and H2 + H2 [24][27];  N2 + N2  [28]; N2 + He, N2 + H2, N2 + N2  [29]; C2 and CN [30];  H2 + 

N and N2 + N [31].  Especially of interest for combustion modeling is the Aufbau method they 

developed for determining dispersion coefficients of effective potential energies from the data 

associated with other interactions.  For example, using the potential for H2 + H2 and N2 + H2, they 

use the Aufbau method, which is akin to a combing rule, to infer the potential for N2 + N2.    
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III. Evaluation of Transport Properties 

Transport properties used in combustion modeling – diffusion, viscosity, thermal 

conductivity, and thermal diffusion – are developed from kinetic theory using classical 

mechanics of binary collisions as described in Hirschfelder, Curtis, and Bird [32]. According to 

Mason and Uribe [11], classical treatments are perfectly adequate for molecular systems in the 

regime, T* > 1 for viscosity and diffusion. 

The deflection function contains the information about the collision dynamics that is 

required to calculate cross sections relevant for the evaluation of transport properties: it gives the 

relative angle between interacting molecules after they collide, as a function of the collision 

velocity and impact parameter.  The deflection function, χ (g,b ),  is given by:  

 



 g,b    2b
dr r2

1
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 where r is the radial distance, b the impact parameter,  rm the distance of closest approach,  

U(r) is the intermolecular potential, μ the reduced mass, and g is the relative velocity. χ (g,b)  is 

used to evaluate a cross section as:  
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which is weighted and averaged over a Boltzmann distribution to yield  a collision integral:  
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where  
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 2 
g2

2kT
  

 

(12) 

The transport properties are developed from kinetic theory as functions of the collision 

integrals 
(l,s)
and certain functionals.  The collision integral appropriate for diffusion is 

obtained when l and s each equal 1, and for viscosity and thermal conductivity the (2,2) collision 

integral is needed.  
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It is customary to work with reduced collision integrals obtained by normalizing the 

collision integrals by the value they would have if the molecules were rigid spheres of diameter 

ζij. (ζij is  the intermolecular separation at which the potential equals zero.) Thus:  

 



ij

l,s * Tij
* 

ij

l,s  T 

(s1)!

2
1

1 (1)l

2(1 l)









 ij

2

 
(13) 

Reduced collision integrals are functions of the reduced intermolecular pair potential 
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where εij is the well depth of the interacting i and j molecules, and T* = kT/ εij. The first order 

Chapman-Enskog solution and the second order Kihara solution of the Boltzmann equation for 

the pure species viscosities η are given by the following expressions:  
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and where the notation [η]i indicates the i
th

 order approximation of the transport property η. 

Higher order approximations differ from first order by 1 to 2%. Functionals of collision integrals 

are used for calculating higher order approximations to the transport properties of interest as well 

as multi component properties; four of these are:  
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The value f  and all ratios of collision integrals, are functions of  T*. For 

multicomponent mixtures with υ components (and binary mixtures for diffusion), the first order 

solution of the Boltzmann equation gives:  

 **

ijij rU
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where mk is the molar mass of the molecule k and xk is its mole fraction.  ηij is the 

interaction viscosity, which represents the viscosity of a hypothetical pure gas whose molecules 

have a mass mij that is twice the reduced mass of species i and j, and which interact through an 

intermolecular potential energy Uij with scaling parameters ζij and εij . Methods of determining 

the scaling parameters are discussed in a later section.  

IV. Measurements 

Experiments are needed both to test the formalism described above and to determine the 

molecular parameters for the interacting species.  In this section, we answer the following 

questions related to experiments: What data are most suited for determining the accuracy of 

calculated results for the various transport properties, and how accurate are the available data? 

IV. 1. Viscosity 
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The prevailing wisdom, documented in many papers, is that viscosity data are most suitable 

for evaluating the accuracy of calculations and for establishing the relationship between the 

potential parameters and the transport properties.  Advances in the measurements of transport 

properties are discussed in an excellent review by Wakeham et al. [5].  Another very important 

source of information in this area is the work of Kestin and Wakeham [33]. 

Below, we discuss a number of comparisons between measured and calculated viscosity 

coefficients for pure species and for binary mixtures of unlike species.  Initially we consider the 

temperature range commensurate with 1 < T* <10.0 since most of the data are in this range.  We 

briefly summarize the different experimental techniques used to measure viscosity coefficients 

and their accuracy. 

Viscosity is a measure of the tendency of a fluid to dissipate energy (produce entropy) when 

disturbed from equilibrium by the imposition of a flow field that distorts the fluid at a specific 

rate. The linear relationship describing this is Stoke’s Law. The dissipative mechanism of shear 

is not coupled directly to heat conduction or to diffusive mass transport. Inevitably feedbacks 

exist; local temperature gradients, enhanced by the energy dissipation due to shear, create 

changes in the local density and/or composition that must be accounted for.  It is not possible to 

measure local shear stresses or to determine the accompanying thermodynamic state; hence it is 

necessary to base viscosity measurement methods on some integral effect and to infer the 

accompanying state by averaging. 

Two kinds of viscometers have been mainly employed in the past: oscillating-body 

viscometers and capillary-flow viscometers. A major development in these approaches was the 

creation of models of the flow fields associated with them so that viscosities could be extracted 

from an analysis of the measurements taken. There exist more modern methods (mainly the 

vibrating-wire viscometer). Better formulae are needed to describe the relationship between the 

viscosity and the quantities measured, since these formulae are frequently the largest source of 

error. 

IV. 1. a.  Oscillating-body viscometers 

An oscillating-body viscometer consists of an axially symmetric body that undergoes 

torsional oscillation in a fluid. The oscillating system is suspended from an elastic wire and 

gently rotated to initiate the motion. The change in frequency and damping decrement caused by 
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the fluid relative to those in a vacuum can be related to viscosity, either directly or indirectly. 

The use of oscillating-body viscometers leads to great simplicity of design and highly precise 

measurements. Different designs exist: oscillating disks, cups, cylinders, and spherical 

viscometers. The error of measurements from an oscillating-body viscometer is less than 0.5%. 

Kestin et al. [34], measured viscosity of eighteen binary mixtures with an error less than 0.2% 

using a viscometer where the important elements were machined entirely from quartz. As a 

cautionary note, measurements prior to 1972 are suspect for all molecules except rare gases 

because the metal parts in the oscillating body viscometers may have facilitated catalytic 

reactions that would alter concentrations of the molecules [5]. 

IV. 1. b. Capillary viscometers 

A capillary viscometer is used to measure the difference of pressure observed on a fluid 

when traveling through a piece of tubing. This method sometimes resulted in less accurate values 

due to the use of a less than satisfactory representation of the relationship between viscosity and 

the measured pressure difference. Kestin and Wakeham [33] suggest that all tabulations of 

viscosity at high temperatures prior to about 1970 obtained with capillarity viscometers should 

be ignored. The error of later measurements is claimed to be below 0.5%. 

IV. 1. c. Vibrating-wire viscometer 

This method was developed by Retsina et al. in 1986 [35], and it is based upon the effect of 

a wire vibrating in a fluid. The wire is under tension and the vibration is usually magnetically 

induced. Modern studies indicate that the uncertainty is less than  0.5% for certain species (i.e. 

0.3 % for N2 viscosity between 298.15 K and 423.15 K and at pressures up to a maximum of 35 

MPa by Seibt et al. [36] and 1% for  three natural gas mixtures between 263 K and 303 K and 

between 5 MPa and 25 MPa by Langelandsvik et al. [37]). 

IV. 1. d. Evaluation of measured viscosities 

Kestin and Wakeham [33]  made a comparison of the experimental viscosity data. The 

largest difference between any of the experimental results was approximately 0.5%, which was 

commensurate with the accuracy claimed by the authors. Together with modern measurements 

and more accurate descriptions of the flow fields associated with the various instruments, it is 
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possible to choose data that have errors less than 0.5%. All the comparison with experiment 

made in this study use data of this quoted accuracy. 

IV. 1. e. Bulk viscosity 

The bulk viscosity of polyatomic gases is directly related to inelastic collisions, and there 

have not been recent experimental studies of these.  Earlier measurements of relaxation 

phenomena were performed with sound absorption and shock tubes for rotational and vibrational 

relaxation.  Since potential energy surfaces and the dynamics calculations associated with 

evaluating relaxation rates are a great deal more accessible than in the 70s, they could be used to 

evaluate the importance of the inelastic collisions in molecular transport.  

IV. 2. Diffusion 

Diffusion is more difficult to measure than viscosity, and is subject to larger errors.  

Measurements are frequently made using a two-bulb method whereby two bulbs, each with a 

different composition of two gases, are in contact with one another.  The composition of gas in 

one of the bulbs is measured as a function of time.  The measured relaxation time is related to the 

diffusion coefficient and the instrument geometry.  Except for rare gas systems, errors in 

measured diffusion coefficients are around 3%, which is about three to six times larger than the 

error in viscosity measurements. Relative errors in diffusion are highest near room temperature 

and lower when T > 500 K.  

IV. 3. Thermal Conductivity 

Measurements of thermal conductivity were subject to considerable errors, especially for 

fluids at high temperatures, because of the difficulty of separating heat conduction from heat 

transfer arising from convection.  This problem was largely resolved in the late 70s by Haarman 

[38], who established the transient hot wire technique as the method of choice for measuring 

thermal conductivity. The temperature rise in a thin platinum wire that is immersed in the fluid 

of interest is determined as a function of time over a time interval that is short relative to that 

required for the development of significant convective heat transfer. High quality data on the 

thermal conductivity of pure gases are still relatively scarce and cover only a narrow temperature 

range—that is not extensive enough for combustion modeling.  The discrepancy between theory 
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and experiment is approximately 2% near room temperature, and around 8% for temperatures in 

excess of 500 K.    

V. Current Practice for Calculating Transport Properties 

V. 1. The TRANLIB approach 

Four approaches are used to evaluate transport properties for combustion modeling.  Each is 

based upon the Law of Corresponding States, which is an underlying principle of molecular 

similarity.  Briefly, invoking  the two-parameter version implies that plots of the reduced 

potential energy, (U/ε) versus reduced distance (r/ζ) would fall on a universal curve, where the 

quantity ε is the well depth and ζ is the intermolecular separation at zero potential energy.  As 

stated by Mason and Uribe [11] ―In retrospect the general principle of corresponding states has 

proved to be much better than it had often been thought to be in the past.  It has a firm basis in 

statistical mechanics and kinetic theory, and a great range of accuracy if care is taken not to 

contaminate it with oversimplified models.‖  

Currently, most transport property evaluation in combustion modeling is accomplished with 

the TRANLIB collection of codes of Kee et al. [39][6] that are incorporated in the CHEMKIN 

suite of codes.  The TRANLIB codes are described in Sandia Report SAND86-8246, which was 

reprinted in December 1990.  Diffusion, viscosity, thermal conductivity, and thermal diffusion 

are developed from kinetic theory assuming classical mechanics and binary collisions using the 

approach described in Hirschfelder, Curtis, and Bird [32] (HCB) and discussed earlier in this 

review.  

TRANLIB uses the collision integrals calculated by Monchick and Mason [40] (M & M) 

that are developed from the Stockmeyer 12-6-3 potential, which is a Lennard-Jones potential to 

which a dipole-dipole interaction term has been added as in Equation (1). The potential depends 

on the center-of-mass separation of the two molecules, r; a function ξ(Θ1Θ2Φ1Φ2), where the 

angles serve to define the orientation of the two molecules; the Lennard-Jones parameters; and 

for polar molecules, on the two dipole moments μ1 and  μ2. The Stockmeyer potential does not 

include terms that account for induction, which is instead included by scaling the two Lennard-

Jones parameters according to formulae given in Hirschfelder, Curtis, and Bird [32]. 
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In the evaluation of the collision integrals, Monchick and Mason [40] (M&M) assumed that 

the system is classical and collisions are elastic. They caution that this approximation will not 

work for the evaluation of thermal conductivity, where inelastic collisions are important, but it 

should work for diffusion, viscosity, and thermal diffusion.  They evaluate the deflection 

function via equation (9) by assuming that the deflection angle is primarily determined by the 

interaction at closest approach, and ignore time-dependence of the molecular orientation.  This 

implies that the collisions follow not one but rather a large number of potentials-each associated 

with a different orientation but having equal weighting factors. They parameterize the collision 

integrals with respect to δ = ¼ (μ
*2

) )( 21   where μ*
2
 = μ

2
/ (εζ

3
).  By making these 

assumptions, the trajectory is replaced by one in which values of ξ and δ are fixed, and the 

deflection function calculation is reduced to a central force problem. The ―pure‖ Lennard-Jones 

collision integrals are associated with δ=0.  Orientation averaged collision integrals are tabulated 

in Tables IV and V in the M&M paper as a function of T*,  and δ
max

 =μ
2
/(2εζ

3
).  Additionally, 

functionals denoted A* through F* required to compute higher order corrections to the transport 

properties, are given in Tables VI through X of the same paper.         

In TRANLIB, when only one of the molecules is polar, induction is estimated using the 

formula given in HCB and our Equation (5) for the interaction between a dipole and induced 

dipole. When only one member of the pair has a dipole moment, a quantity ξ is defined which 

requires the dipole moment of the polar molecule and the polarizability of the other molecule for 

its evaluation.  The quantity ξ is unity when both molecules are polar or both are not, but when 

one molecule is polar and the other is not, it is given by 
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Equation (28), and Equations (47)-(48), are in SI units, where 0 is the permittivity of free 

space. For both historical reasons and for convenience, transport properties calculations are often 

done in cgs units, which, due to a different way of handling electric charge, requires modification 

of the equations: in cgs units, the (40) terms are absent from the equations.  

The scaling parameter  is used in calculating the well depth and collision diameter: 

 kjjk  2  (31) 

and 
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Scaling has a large effect on the well depth and little effect on the collision diameter.  

There is sometimes disagreement between the TRANLIB code and manual, and the code is 

more often correct, e.g., the formula for ξ is incorrect in the manual but is correct in the code.  

The TRANLIB parameter database contains dipole moments for only a few polar molecules 

(CH3O, CH4O, H2O,  NH3, HFOn  (n=0,8) which is unfortunate, since there are many more polar 

molecules in the data set that have dipole moments reported in the literature. Problematically, 

radical species are polar but most are assigned zero dipole moment in the TRANLIB database. 

The dipole correction is important, and is more significant at lower temperatures; without it, the 

viscosity of H20 is too high by 27 % at 300 K, and 18% at 600 K; including the correction 

reduces the deviation to values less than 5%.  The polarizability data are also very sparse: the 

database has polarizabilities for only ten molecules. 

In TRANLIB, thermal conductivity depends on the rotational relaxation collision number 

(Zrot) and also upon whether the molecule is monatomic, linear or nonlinear, (denoted in the 

database by LIN = 0,1, or 2, respectively). The TRANLIB package requires 6 parameters for 

each molecule. 

 An attractive feature of TRANLIB is that the logarithm of the transport property is fitted to 

a third order polynomial in the logarithm of the temperature at the beginning of a simulation and 

this results in considerable computational savings.  This is only relevant for mixture 

approximations and not for a multicomponent treatment. TRANLIB uses the so called mixture 

approximation of Wilke [41] that was modified by Bird et al. [42] to determine the viscosity of 
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mixtures. Grcar [43] found an error in the calculation of the pure species thermal conductivity 

which is only used for mixture approximation calculations.  The error is in the subroutine 

LAMFIT where the constant HELPD is given the value 2.6280E-3, but should be 1.85879E-3. 

V. 2. The approach of Mason, Kestin and Colleagues 

  MKC [7-11] observed that plots of the reduced potential energy (U/ε) versus (r/rm) did not 

fall on a universal curve.  The so-called two parameter corresponding states principle failed at 

very low and high temperatures because the shape function, U(r) = εφ(r/ζ), was not universal for 

the rare gases.  Mason and Uribe [11] note the remarkable success of the two-parameter 

corresponding states principle, pointing out that it is quite successful over a broad range of T* 

because the transport properties are dominated by the effect of the relatively featureless repulsive 

wall, and that viscosity and diffusion are not very sensitive to anisotropy of the potential. This 

conclusion was based on advances made in experiments and theory in chemical physics. 

Advances included an improved knowledge of the intermolecular potential derived from 

molecular beam scattering experiments (Parson et al. [44][45] and Scoles [46]), better inversion 

approaches for deducing the potential energy from experiments, improvements in calculating 

dispersions energies (Tang and Toennies [25]), and better data associated with the spectroscopy 

of rare gas dimers.  

The rather immense activities in the chemical physics community post 1970s resulted in 

improved van der Waals potential parameters for a number of systems (see for example, 

McCourt et al., 1995 [47] and 2002 [48])  There were also purported to be better approaches to 

the combining of potential parameters for pure species to yield values appropriate for binary 

mixtures.   

These various advances motivated MKC to revise their treatment for the calculation of 

transport properties for dilute gases. They indicate that there are three energy ranges designated 

by values of T*.  In the first region defined by T* ≤ 1.0, dispersion forces, frequently described 

as only including a C
6
/r

6
 term, dominate, and this is only for rare gases and  their mixtures and 

not polyatomic molecules. The principle of corresponding states is more limited for polyatomic 

gases for three reasons:  the intermolecular forces tend to be more complex, polyatomic gases 

undergo inelastic collisions, and there is less experimental data.  In the second region, 1.0 ≤ T* ≤ 

10.0, the Lennard-Jones potential and its two parameters, ζ and ε, are required for collision 
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integral evaluation. Actually, they give expressions for the collision integrals that are determined 

from fitting expressions for the calculated properties to experimentally determined values.  The 

collision integrals determined in this fashion are nearly identical to those calculated with a 

Lennard Jones potential using classical mechanics and Equations (9)-(12), as shown by Figure 1.  

At T* > 10.0, features of the potential are described by an exponential repulsive potential, the so-

called Born Mayer potential, U(r) = Uoexp(-ρR),  are influential, requiring additional length and 

energy scaling parameters, ρ and Uo, respectively to evaluate collision integrals.  The MKC 

method adds three new parameters per species, and requires five potential parameters for the 

calculation of the collision integrals.  In later papers, Tang and Toennies [25] derived 

relationships between ε and ζ and Uo and ρ that require dispersion coefficients, thus reducing the 

number of parameters to three for cases not requiring corrections for non- and weakly polar 

molecules. Potential parameters for the set of molecules reported by MKC were derived from a 

set obtained for argon, the application of corresponding states, and viscosity data for species of 

interest.  

T* ≤ 1.0, for noble gases only:  
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and for all molecules: 
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The coefficients are given in Table 1. 
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The corresponding coefficients are given in Table 2. 
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where  10ln *

010 U . 

Numerical values for the coefficients aij and bij are given in Table 3. 

MKC present empirically derived expressions for collision integrals, Ω
(1,1)

* and Ω
(2,2)

* based 

upon viscosity and diffusion measurements for each of three T* ranges for the rare gases.  The 

correlations were extended to a set of polyatomic molecules [9][10] to enable the calculation of 

collision integrals appropriate for viscosity, diffusion, and thermal conductivity.  Polyatomic 

molecules considered were: N2, O2, NO, CO2, N2O, CH4, CF4, SF6, C2H4, and C2H6.  The 

collision integral Ω
(1,1)

* was slightly different for the polyatomic molecules while   Ω
(2,2)

*  was 

the same for rare gases and polyatomic molecules. Errors in measurements are slightly larger for 

polyatomic molecules: 0.3 to 1.0% for viscosity and up to 5% for diffusion.  None of the 

molecules considered has a particularly strong dipole moment.       
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V. 3. Dipole Reduced Formalism Method (DRFM) approach 

Paul [49] and Paul and Warnatz [2] adopt the approach of MKC for the calculation of 

collision integrals.  They extend the approach to include more complex molecules by scaling the 

potential parameters to account for dipole-dipole and dipole-induced dipole interactions:  
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The correct expression for collision integral calculations is given in Bzowski et al. [10].  

Paul generates some new potential parameters for CH4 combustion.  Durant and Paul used the 

program Gaussian-92 in the ―Self Consistent Field‖ mode to compute molecular polarizabilities 

that are used to estimate dispersion coefficients, well depths, and the location of the potential 

minimum [49].  The latter is achieved by employing the generalized correlations between van 

der Waals interaction potential parameters and molecular polarizabilities developed by the Pirani 

group [50].  The methodology of Tang and Toennies [25] is used to determine the scaling 

parameters for the exponential repulsive potential using estimated values of ε and Rm, where Rm 

is the internuclear separation at the potential minimum. By using this methodology, they are able 

to generate the requisite five potential parameters from three of them.  Since many of the species 

considered are radicals, for which there are few or no measurements, questions about the 
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accuracy of this approach remain.  Other modifications by Paul are concerned with binary 

thermal diffusion factors and thermal conductivities.   They provide a new method for 

calculating thermal diffusion factors.  They adopt the approach of Uribe et al. [51][52] for 

thermal conductivities, and this enables them to obtain properties for mixtures without using a 

multicomponent approach.  A table of fitting coefficients for (λi/λi
m

) for various molecules where 

λi and  λi
m

  are the pure species thermal conductivities of species i as it is, and as if it were a 

monatomic molecule, respectively, is provided in Paul’s report. Paul and Warnatz [2] also 

modeled a 13 species CO/H2 flame. Species considered in the flame modeling study are: CO, 

CO2, H, H2, H2O, H2O2, HO2, O, O2, OH, and N2 and they provide new potential parameters for 

them.  Potential parameters for some of the species were taken from MKC, others were obtained 

by fitting, while the others were obtained from calculated polarizabilities and correlations.  

V. 4. Ern and Giovangigli 

Calculation of transport properties of mixtures has historically been computationally 

intensive.  In the early 1960s, Monchick, Yun, and Mason (MYM) [53] applied the approach of 

Wang Chang et al. [54] to derive a nonsymmetric system of equations that can be solved to 

determine the transport properties. Solving such a system can present a substantial computational 

cost when the system must be solved many thousands of times, as happens when simulating 

spatially- and temporally-varying conditions such as flames.   

In contrast, in the 1990s, Ern and Giovangigli (EG) used the formalism of Waldmann and 

Trubenbacher [55] to derive a symmetric system of equations that can be solved rapidly and 

accurately using iterative methods. The theoretical and computational approaches developed by 

EG are described in a series of papers [12-18]. The most thorough discourse on their approach is 

given in a monograph published in 1994 where they describe their iterative methods for solving 

linear systems arising from kinetic theory to provide transport coefficients of dilute polyatomic 

gases in multicomponent mixtures.  

In both the EG and MYM approaches, a generalized Boltzmann equation is considered and 

the theoretical approach is that of a first order Enskog expansion. EG indicate that for each 

transport coefficient various transport linear systems can be considered that correspond to 

different choices for the polynomial expansions of the species distribution functions.  They also 

demonstrate that these linear systems can be truncated to obtain accurate approximate values of 
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all the various transport coefficients while still retaining their symmetric form, and they estimate 

errors of 10
-3 

are achieved with modest computational effort for multicomponent mixtures. In 

their book, they also present a chapter on numerical experiments in which they introduce some 

mixture approximations that are somewhat less accurate but more computationally efficient. 

A more recent report by Ern and Giovangigli [56], provides a detailed description of 

EGLIB, which is a general purpose Fortran library for multicomponent mixture transport 

property evaluation.  In this approach, a number of calculations are of order (NS)
2
, where NS is 

the number of species in the mixture.  They use the TRANLIB database and the TRANLIB 

evaluation of collision integrals in EGLIB with the formalism developed in their earlier studies 

of transport linear systems.   

VI. Determining Potential Parameters from Viscosity Data 

Prior to looking at more complex systems like polar molecules and radical species, and 

mixtures where combination rules are used to infer unlike molecular interactions from like 

molecular interactions, we digress a bit and examine using viscosity data to obtain potential 

parameters.    

VI. 1. Pure species 

 Mourits and Rummens [57] review intermolecular potentials based upon viscosity 

measurements, and discuss the fact that many combinations of the potential parameters, εi and ζi, 

can be used to calculate viscosities of acceptable precision (2% or less) for species i, even for a 

range of temperatures.  Kim and Ross [58] had previously pointed out that at a given 

temperature, there is a curve in (ε, ζ) along which the viscosity is constant, and they determined 

the shape of the curve for some special cases of reduced temperature for which analytical 

approximations for the collision integral are available.  However, the non-uniqueness or 

indeterminacy of the potential parameters has not been recognized in many disciplines, including 

the combustion and chemical physics communities that use transport properties in various 

applications.  

 

Wang  and Law [59] remark that an accurate description of species diffusion is one of the 

most important elements towards the development of quantitative reaction models of flame 
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processes. They single out the importance of H atom binary diffusion coefficients DH,i, and state 

that the accuracy of these depends primarily on the accuracy of the L-J potential parameters and 

the accuracy of the combination rules. Although they did not recognize the non-uniqueness of 

the potential parameters, they review these parameters derived from a variety of sources, remark 

on their differences, and note that despite the considerable differences in some of the  L-J 

parameters, differences in their predicted binary diffusion coefficients can be small. They 

suggest that compensating errors might be responsible for this.  Note this is not true for all sets of 

parameters examined. In a later study, Middha et al. [1] demonstrated that differences in the 

intermolecular potential parameters produce differences that are significant in the diffusion 

coefficients; however, these differences are more important at temperatures greater than 1000 K.  

Paul [49], Paul and Warnatz [2], and Mehdipour and Eslami [60] also did not recognize that the 

potential parameters are non-unique. 

   Bastien et al. [61] collected recent viscosity data for a number of substances and 

temperatures and used Powell’s method as described by Press et al. [62] with a brute force fitting 

approach to determine ε and ζ.  They found a nearly linear ―trough‖ in ε, ζ space, such that any 

parameter pair in the trough yields a viscosity that agrees with experiment within about 1%, as 

quantified by the absolute mean relative error  
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1 exp
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as shown on Figure 2. Although the existence of the trough is closely related to the non-

uniqueness of potential parameters as discussed above, in this case the result applies to a range of 

temperatures rather than a single temperature.  One (ε, ζ) pair provides the best fit to data, for 

each of the systems and temperature ranges investigated, but points nearby in the trough fit 

nearly as well. The trough is found for both pure species and for mixtures. Figure 3 shows the 

trough for O2 + SF6.  As indicated by both Figure 2 and Figure 3, the trough is nearly a straight 

line. The uncertainty in ε is generally on the order of 10% while the uncertainty in ζ is less than 

3%. The point in (ε, ζ) parameter space that leads to the best fit to viscosity data is sensitive to 

small changes in the data, so different sets of experiments may lead to very different parameter 

estimates.  Therefore, simply quoting the best-fit parameter values does not allow comparison 
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with the results of other experiments or predictions: the location in parameter space may differ, 

but the viscosity predictions may be nearly the same.  For this reason, Bastien et al. recommend 

that the slope of the trough be reported along with the best-fit values of ζ and ε. If different 

researchers obtain the same equation for the ―trough,‖ then their potential parameters are 

functionally the same even if they are not identical.  

 Transport data has frequently been used to acquire information about the intermolecular 

potential assuming the potential to be of the form U(r) = εφ(r/ζ) where φ is the shape function. 

There are contradictory reports about the efficacy of this in the literature. Many (Brown and 

Munn [63] and references therein) have indicated that non-equilibrium properties are severe 

constraints on the intermolecular potential even though the relationship between the non-

equilibrium and equilibrium properties and the potential may not be unique. In contrast and more 

in concert with current results, Kim and Ross [58] and Barker and Pompe [64] indicated that 

diffusion coefficients are remarkably insensitive to the intermolecular potential.  The 

insensitivity of viscosity to the potential is not widely known in the chemical physics community 

as well.  The non-uniqueness of potential parameters also has not been recognized in recent 

studies where highly accurate measurements of transport properties are used to constrain the 

intermolecular potential in a multi-property analysis, e.g., Cappelletti et al. [65]. While transport 

properties may constrain the potential in a multi-property analysis, they are not a severe 

constraint as suggested earlier. 

Using viscosity measurements as a metric allows the evaluation of the effectiveness of 

various theoretical approaches in replicating experimental values for various classes of 

molecules for the range 1 < T* < 10.  The supporting data associated with the various approaches 

is used and the molecules and their data are listed in Table 4 and Table 5. 

TRANLIB, MKC, and DRFM agree well with experiments for rare gases, and DRFM only 

differs from MKC for polar molecules.  The results for rare gases indicate that the collision 

integral calculations for MKC, DRFM and TRANLIB yield nearly identical results. Since most 

combustion occurs in air, the transport properties of nitrogen are important in mixture and multi-

component combustion modeling calculations. Figure 4 and Figure 5 and provide the deviation 

plots for molecular oxygen and nitrogen, respectively.  As shown in Figure 4 DRFM does quite 

well in predicting the molecular oxygen viscosity (deviation of about 0.5 %), while the errors in 
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the TRANLIB viscosities are larger (about 3 %) and increases with temperature, most likely due 

to the length and energy scaling parameters, ζ and ε. The observations are similar for molecular 

nitrogen; the error in TRANLIB is smaller (about 0.5 %). Carbon dioxide errors are also small, 

usually less than 1%.  DRFM exhibits relative errors greater than 4% at low temperature for 

methane (not shown), but these are reduced significantly for temperatures greater than 150 K, 

while the deviations for TRANLIB are of opposite sign.  It would appear that the potential 

scaling parameters might underlie these deviations, which decrease with temperature.   

VI. 2. Polar Molecules 

There are not many viscosity measurements for polar molecules, which are required to 

evaluate the importance of dipole moment corrections. MKC did not consider polar molecules.  

TRANLIB treats polar molecules by using the Stockmeyer potential, while DRFM scales the 

length and energy parameters of the potential according to an approach put forth by Hirschfelder 

et al. [32].  Paul provides scaling factors for ε and ζ that are applicable when one or both 

interacting molecules are polar. These are based on dipole-dipole and dipole-induced-dipole 

interaction; see Equations (43)-(48).  Equations (43) and (44) provide the scaling for εi and ζi, 

respectively.  

Unfortunately there are many polar molecules (e.g., radical species) for which no dipole 

moment is provided in the TRANLIB parameter set, and even more molecules that are assigned 

zero polarizability. The lack of dipole moments in particular is a major shortcoming, and 

correcting it should be a high priority.     

TRANLIB does not require the polarizability for the interactions of two polar molecules, but 

DRFM does. The required molecular data (potential parameters, dipole moments, and 

polarizability) for both H2O and NH3 are tabulated in Table 6.  

We performed a series of numerical experiments to assess the importance of the dipole 

correction. The results are shown in Figure 6 and Figure 7 for H2O and NH3, respectively.  When 

we use the TRANLIB program and its supporting data for H20, we obtain very good agreement 

with experiment.  We assess the magnitude of the effect of polarity by setting the dipole moment 

of water to zero and comparing its calculated viscosity with viscosity computed with the correct 

(non-zero) dipole moment. The effect on viscosity  is quite large at room temperature (in excess 

of 80 %), decreases with temperature, and is less than 40% at 450 K.  In contrast, if we use the 
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parameters tabulated for H20 in DRFM, we find quite large deviations, but it is not obvious 

whether this is due to incorrect parameters in the DRFM parameter set or to a problem with the 

DRFM correction for dipoles. As with the TRANLIB numerical experiment discussed above, we 

set the dipole moment and polarizability of H2O to zero, and use the DRFM program and 

potential parameters to calculate the viscosity.  Results are close to those obtained for H20 in 

TRANLIB with the dipole moment set to zero. That is, TRANLIB and DRFM, used with their 

respective input potential parameters, predict similar viscosity values for H20 when the dipole 

moment and polarizabilities are set to zero.  Viscosity calculations with correct values of the 

dipole moments that are tabulated in Table 6 agree well with experimental values only for 

TRANLIB.  The dipole correction in DRFM is likely to be incorrect.  

TRANLIB and its supporting data also predict the NH3 viscosity with small deviations. The 

DRFM parameter set does not contain potential parameters for NH3, so we obtain them by fitting 

εi and ζi to yield the best fit to data.  The values for the dipole moment and polarizability are 

taken from the Handbook of Chemistry [66].  As before, we assess the importance of the 

correction for polar molecules in DRFM and TRANLIB by setting the dipole moment and 

polarizability of NH3 equal to zero and re-calculating the viscosity as a function of temperature, 

shown in Figure 7.  Deviations are large at low temperature, and decrease with temperature.   

Although the available data for polar molecules are limited, we recommend using the 

TRANLIB approach because it appears to be more reliable, and its scientific foundations are 

stronger. 

VI. 3.   Radical Species  

There is a dearth of experimentally determined radical species viscosities because they are 

difficult to measure due to their high reactivity. Cheng and Blackshear [67] measured the 

viscosity of mixtures of atomic hydrogen and molecular hydrogen, reported results for the pure 

species (H and H2) and binary mixtures for the temperature range 200 to 373 K, and compared 

their results with earlier experiments conducted by Browning and Fox [68]. Cheng and 

Blackshear viscosities tend to be lower than those of Browning and Fox, and the lack of 

agreement is attributed to differences in flow regimes. Figure 9 shows how the TRANLIB and 

DRFM values calculated with their supporting data compare with the measured values.  

Viscosity 1 is for pure H and its deviations are large, especially for TRANLIB where deviations 
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larger than 75 % are noted for the higher temperatures; viscosity 2 is H2 and it has the smallest 

deviations including Cheng and Blackshear’s values. The symbol, 12, represents the H + H2 

interaction viscosity. Its deviations for viscosities calculated by Cheng and Blackshear are quite 

small; the TRANLIB deviations are smaller than 20 % and often smaller than 10 %, while those 

associated with DRFM are larger than 30%. 

Diffusion coefficients of the radical species, OH, HO2, and O3  in He and of OH in air were 

measured at a single temperature by Ivanov et al. [69],  Remorov et al [70], Bertram et al. [71], 

and Bedjanian et al. [72] and are listed in Table 7.  The experimental diffusion coefficients agree 

well with each other, and with Ivanov et al.’s calculated values. The DRFM OH + He diffusion 

coefficient is too low compared to experimental values, and the TRANLIB value is too high. 

Although high, the DRFM values yield better agreement with experiment for HO2 + He than 

TRANLIB, and TRANLIB does very well for O3 + He.  To understand the discrepancies, it is 

important to examine the supporting data, and recall that the transport property sensitivity to ζ is 

about an order of magnitude greater than the sensitivity to ε. Fortunately, the potential 

parameters used for He are similar in TRANLIB, DRFM, and Ivanov et al. With the exception of 

He, the different data sets have quite different parameters for each molecule.  We calculated the 

diffusion coefficient for OH + He and HO2 + He using TRANLIB but with different parameters, 

and designate these as TRANLIB2.  The parameters are: (1) the dipole moments from Ivanov et 

al., (2) polarizabilities from Paul, and (3) the potential parameters of H2O as a surrogate for OH 

and H2O2 for HO2.  Ivanov et al. assumed that H2O is the polar analog of OH and H2O2 is the 

polar analog of HO2, based on the similarity of their dipole moments. TRANLIB2 parameters are 

listed in Table 8.  Diffusion coefficients for TRANLIB2 are 673.4 and 553.0 cm2 s
-1

 for He with 

OH and HO2, respectively.  The TRANLIB2 diffusion coefficient of He + OH agree very well 

with experiment. Deviations of the TRANLIB2 OH and HO2 diffusion coefficients from the 

Ivanov et al. measured values are 1.7 and 28.6% as shown in Figure 9. 

These comparisons again stress the importance of revisiting the supporting data in 

TRANLIB.  Ivanov et al. showed that calculated diffusion coefficients give better agreement 

with experimental values if the potential parameters from the polar analogs (H2O for OH) and 

(H2O2 for HO2) are used rather than the non-polar analogs O and O2, respectively. Using this 

type of approximation might help obtain parameters for radical species for which there are no 

direct experimental data. 
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VI. 4. Combining rules: 

Mourtis and Rummens point out that finding suitable potential parameters for mixtures is 

harder than for single species. Combining rules are used to predict the potential parameters 

characterizing the interactions of two unlike molecules from parameters characterizing each of 

the individual molecules. There has long been debate about the suitability of different 

combination rules [see for example, Maitland et al. [20],  Bzowski et al. [10], and Paul [49]].  

The most commonly used combining rule for the collision diameter is the arithmetic mean (AM):  
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This rule is exact under the assumption that the interacting molecules are hard spheres.  The 

most commonly used combining rule for the well depth is the geometric mean (GM), also called 

the Berthelot rule:  

 jjiiij    (51) 

In practice, this rule often overestimates the strength of the interactions between unlike 

molecules, and in response to this, other rules have been proposed which give more weight to the 

component with the weaker intermolecular forces [20]. One of these is the harmonic mean (HM), 

originally advocated by Fender and Halsey (1962) [73]: 
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More sophisticated combining rules like that of Kong [74] (KR) have been proposed for ζij 

and εij:  
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As discussed above, Bastien et al. [61] demonstrated that the parameters for individual pure 

species and binary mixtures are not uniquely determined by a set of viscosity measurements: the 
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(εij, σij) values that fit a set of experimental data with low uncertainty define a nearly linear 

“trough” in parameter space.  A single point provides the best viscosity predictions, but values 

elsewhere on the trough provide reasonable predictions.  They also found that the various 

combining rules presented above for a given mixture yields quite different values for pairs of 

potential parameter.  It is often stated that all of the combining rules tend to under-predict the 

viscosity; Bastien et al. found this not to be strictly the case. Relative to combined parameters 

that they found from fitting transport properties for binary mixtures, the arithmetic mean 

overpredicts the collision diameter. Kong’s rule overestimates it even more. Kong’s rule, 

however, underestimates the combined εij, thus yielding a (ε, σ) pair on or near the trough and 

leading reasonably good viscosity predictions in most cases. They observed no consistent over- 

or under-prediction in the viscosity when the geometric mean or the harmonic mean rules are 

used. 

VII. Transport Properties for T* >10.0 

Mason, Kestin, and their various colleagues observed a slight failure in the Law of 

Corresponding States when the LJ 12-6 potential was used for values of T* greater that 10 and 

suggested that for high T* it should be replaced by a Born-Mayer exponential repulsive 

potential, U(r)=Uoexp(-r/ρ),  thereby introducing two additional parameters.   

The Born-Mayer potential parameters can be evaluated using a damping function approach 

as suggested by Tang and Toennies [25] when Rm, ε, and the dispersion constants (mostly C6) are 

known. Pirani and colleagues (Pirani et al. [75] and Cambi et al. [50]) suggest an approach to 

finding the L-J potential parameters that is based on molecular polarizability.  If the correlations 

they determine are used, Rm (the distance of the minimum of potential), ε, and the dispersion 

parameters can be estimated.  These empirical relationships can be used to generate the set of 

potential parameters required for transport property calculations over a broad range of 

temperatures.  Each parameter is a potential source of error, and as the number of parameters 

increases, the errors can multiply, and potentially cause some serious errors in modeling studies.   
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It is of interest to evaluate if there are benefits acquired by using the Born-Mayer potential 

even if there is the possibility of additional parameter errors.  Unfortunately data spanning the 

temperature range of interest is only available for a few molecules. We found data for the 

molecules Ne, H2, and N2. Figure 10 is a deviation plot for Ne where the viscosity is calculated 

two ways:  using the LJ 12-6 potential over the entire T* range or replacing it with the Born 

Mayer potential at the T* greater than 10.  The two approaches track one another and give nearly 

identical answers. The same is true for H2 and N2 as shown in Figure 11 and Figure 12, 

respectively. In fact, for N2, we observe that the predictions are better when using a pure L-J 

potential.  It is interesting that in the case of N2, the Born Mayer potential does not work for T* 

less than 10, while for the other molecules, it would be acceptable.  

At this time, based on the very limited data that we have, we would recommend using the L-

J potential over the entire temperature range since using it offers the possibility of fewer errors 

since fewer parameters are required.  We also recommend that the benefits and limitations of 

using the LJ potential for T* greater that 10 continue to be evaluated as more data become 

available. 

VIII. Thermal Conductivity 

Thermal conductivity for monatomic gases is computed with the same collision integral as 

used for viscosity: Ω
(2,2)*

, and it requires similar potential parameters for evaluation. With the 

exception of monatomic species, it is actually more complex because of the importance of 

inelastic collisions. We have made a limited study of thermal conductivity for a few non-polar 

molecules and one binary mixture by comparing calculated values of thermal conductivity with 

experimental values.  

The various treatments of energy transfer to support calculations of thermal conductivity 

vary among TRANLIB, DRFM, MKC, and EGLIB.  Each approaches shares a common guiding 

principle, namely, that one can evaluate contributions of the various degrees of freedom 

separately, and that the thermal conductivity is the sum of the contribution from the various 

internal degrees of freedom.  This is the so-called Wang Chang-Uhlenbeck-de Boer (WCUB) 

[54] theory that has been used and modified slightly by many others.  
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The contribution of the translational degrees of freedom is evaluated by assuming that the 

molecule of interest is monatomic and by using formulae appropriate for rare gases. The 

evaluation of the contributions of the internal degrees of freedom is handled differently by the 

four approaches. The flow of energy to the various internal degrees of freedom is often assumed 

to occur by a diffusion process and the diffusion coefficients associated with the various degrees 

of freedom are approximated differently. MKC assumes that there are different diffusion 

coefficients associated with each of the degrees of freedom, and TRANLIB uses the same 

diffusion coefficient for pure species thermal conductivities that they use for mixture averaged 

thermal conductivities for all the degrees of freedom.  Yet for the limited number of molecules 

whose thermal conductivity we have evaluated, they produce quite similar results.  TRANLIB, 

MKC, and DRFM only provide for the calculation of mixture averaged properties for thermal 

conductivity.   EGLIB is the only code that provides a multicomponent treatment for thermal 

conductivity. 

As one might expect, the most important energy transfer processes are those involving the 

translational and rotational degrees of freedom. This is why the rotational relaxation collision 

number is important in most formalisms. Theories for its temperature dependence have been 

presented by Brau and Jonkman [76] and Parker [77], but only for homonuclear diatomic 

molecules. The collision number for rotational relaxation can be measured by a number of 

techniques like sound absorption and even thermal conductivity measurements. Internal 

rotations, which are important at thermal energies, have not been treated in any of the 

approaches. These are important especially for more complex fuel molecules. As molecules 

become more complex and temperature increases as it does in combustion, other degrees of 

freedom will become important. Thermal conductivities of strongly polar gases are anomalously 

low, and we expect this to be the case for the thermal conductivities of radical species. 

 Thermal conductivity, unlike other transport properties, depends on thermo-chemistry.  A 

quantity that is often used for estimating the effects of energy transfer on thermal conductivity is 

the heat capacity. Frequently, the contribution of the internal degrees of freedom to the thermal 

conductivity has been estimated by using a Eucken correction.  The coefficient of thermal 

conductivity for a polyatomic gas is estimated to be the product of the thermal conductivity 

coefficient, assuming that the gas is monatomic, times the Eucken factor 
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where  Cv is the heat capacity at constant volume. Hirschfelder derived an improved  Eucken 

factor, 0.354 (Cv/R) + 0.469. Frequently the Eucken factor approach has been over-valued and 

many think that thermal conductivity is a solved problem. This is not the case. Hirschfelder 

indicated that the Eucken factor does not seem to be applicable to the rotational degrees of 

freedom for polar gases near room temperature, Mason and Monchick [78] indicated that the 

Eucken factors can vary considerably for different molecules.  

IX. Summary and Conclusions 

This review examines current approximations and approaches that underlie the evaluation of 

transport properties for combustion modeling applications. Discussed in the review are: the 

intermolecular potential and its descriptive molecular parameters; various approaches to 

evaluating collision integrals; supporting data required for the evaluation of transport properties; 

the quality of experimental measurements and their importance for validating or rejecting 

approximations to property estimation; the interpretation of corresponding states; combination 

rules that yield pair molecular potential parameters for unlike species from like species 

parameters; and mixture approximations. The insensitivity of transport properties to 

intermolecular forces is noted, especially the non-uniqueness of the supporting potential 

parameters.  Viscosity experiments of pure substances and binary mixtures measured post 1970 

are used to benchmark a number of approximations, and the intermediate temperature range 1< 

T* < 10, where T* is kT/ε, is emphasized since this is where rich data sets are available. When 

suitable potential parameters are used, the accuracy of transport property evaluation for pure 

substances and binary mixtures is acceptable when they are calculated using the approaches of 

Kee et al. [6], Mason, Kestin, and Uribe  [7-11],  Paul and Warnatz [2],  Ern and Giovangigli.  

[12-18]. Although the approach to treating polar molecules appears to be different in TRANLIB 

and DRFM, they yield quite similar results when the supporting data required by each is 

accurate. Recommendations from the review include a strong plea for revisiting the supporting 

data required by the various approaches, and updating the data sets with accurate potential 

parameters, dipole moments, and polarizabilities. Potential parameters and the slope of the 

trough line should be reported for the molecules in the supporting data sets. We also recommend 
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using the TRANLIB approach for treating polar molecules. Combining rules were found to under 

predict the viscosity in most of the cases, and Kong’s rule was found to work better than the 

others, but we recommend that improved rules be developed. There are very few measurements 

of transport properties for radical species, and enter a strong recommendation for additional 

measurements. Thermal conductivity, which is important for the fuel and oxidizer in the early 

stages of flame development, must have accurate values of the molecular heat capacity for its 

evaluation. 
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Table 1: Coefficient of the low-temperature formulas for Ω
(2.2)*

 and Ω
(1.1)*

 for noble gases 

(Kestin et al. [8]). 

i ai1 ai2 bi1 bi2 

1 0.18 0 0 0 

2 0 0 0 0 

3 -1.20407 -0.195866 10.0161 -10.5395 

4 -9.86374 20.2221 -40.0394 46.0048 

5 16.6295 -31.3613 44.3202 -53.0817 

6 -6.73805 12.6611 -15.2912 18.8125 
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Table 2: Coefficient of the formulas for Ω
(2.2)*

 and Ω
(1.1)*

 for the range of temperature 1 ≤ T
*
 ≤ 10 

(Kestin et al. [8]). 

 ai (noble and polyatomic gases) bi (noble gases) bi (polyatomic gases) 

0 0.46641 0.357588 0.295402 

1 -0.56991 -0.472513 -0.510069 

2 0.19591 0.0700902 0.189395 

3 -0.03879 0.016574 -0.045427 

4 0.00259 -0.00592022 0.0037928 
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Table 3: Coefficient of the formulas for Ω
(2.2)*

 and Ω
(1.1)*

 for high temperatures T
*
 ≥ 10 (Kestin et 

al. [8]). 

i ai1 ai2 ai3 ai4  

1 -33.0838 20.0862 72.1052 8.27648  

2 101.571 56.4472 286.393 17.7610  

3 -87.7036 46.3130 277.146 19.0573  

i bi1 bi2 bi3 bi4 ci 

2 -267.00 201.570 174.672 7.36916 1 

4 26700 -19.2265 -27.6938 -3.2955 10
3
 

6 -8.910
5
 6.31013 10.2266 2.33033 10

5 
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Table 4: Scaling potential parameters of some species from TRANLIB and DRFM. 

 ε (K) ζ (Ǻ) 

 TRANLIB DRFM TRANLIB DRFM 

Ar 136.500 143.20 3.330 3.350 

O2 107.400 121.1 3.458 3.407 

N2 97.530 98.4 3.621 3.652 

CO2 244.000 245.3 3.763 3.769 

CH4 141.400 161.4 3.746 3.721 

H2O 572.400 535.21 2.605 2.673 

NH3 481.000 282.2
1
 2.290 3.30

1
 

HO2 107.400 365.56 3.458 3.433 

OH 80.000 281.27 2.750 3.111 

H2O2 107.400 368.11 3.458 3.499 

 

                                                 
1 Fitted values  
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Table 5: Dipole moment μ and polarizability α of some species from TRANLIB and DRFM. 

 μ (Debye) α (Ǻ
3
) 

 TRANLIB DRFM TRANLIB DRFM 

Ar 0.000 0 0.000 1.642 

O2 0.000 0 1.600 1.600 

N2 0.000 0 4.000 1.750 

CO2 0.000 0 2.650 2.65 

CH4 0.000 0 2.600 2.60 

H2O 1.844 1.847 0.000 1.450 

NH3 1.470 1.4718
2
 0.000 2.81

2
 

HO2 0.000 2.09 0.000 1.950 

OH 0.000 1.655 0.000 0.980 

H2O2 0.000 1.573 0.000 2.230 

 

  

                                                 
2
 Value taken from reference [66] 
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Table 6: Potential parameters for H2O and NH3 in TRANLIB and DRFM with and without the 

polar correction. 

(ε: well depth; ζ: collision diameter; μ: dipole moment; α: polarizability)  

  ε (K) ζ (Ǻ) μ (Debye) α (Ǻ
3
) 

H2O 

TRANLIB 572.4 2.61 1.844 0 

TRANLIB, without polar correction 572.4 2.61 0 0 

DRFM 535.2 2.67 1.847 1.45 

DRFM, without polar correction 535.2 2.67 0 0 

NH3 

TRANLIB 481.0 2.92 1.47 0 

TRANLIB, without polar correction 481.0 2.92 0 0 

DRFM  282.2
3
  3.30

3
 1.4718

4
 0.281

4
 

DRFM, without polar correction 282.2 3.30 0 0 

 

                                                 
3
 Fitted value 

4
 Value taken from reference [66] 
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Table 7: Binary diffusion coefficients (cm
2
 s

-1
) for the interaction of He with three other radical 

species measured and computed in different ways. 

 OH and He HO2 and He O3 and He 

TRANLIB 673.4 553.0 424.2 
DRFM 636.7 526.9 X 
Measured by Ivanov et al (2007)  662 ± 33 430 ± 30 410 ± 25 
Computed by Ivanov et al (2007)  636.7 407.3 425.4 
From Remorov et al. (1996)   609 ± 250 X X 
From Bertram et al. (2001)  665 ± 35 X X 
From Bedjanian et al. (2004)  X 405 ± 50 X 
TRANLIB2 666.3 552.6 X 
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Table 8: Potential constants for OH, He, HO2, and O3 from different sources. 

 ε (K) σ (Å) α (Å3) μ (Debye) 

OH 

TRANLIB 80.000 2.750 0.000 0.000 
TRANLIB2 572.40 2.605 0.98 1.74 
DRFM 281.27 3.111 0.980 1.655 
Ivanov et al (2007)  809.1 2.641 X 1.74 

He 

TRANLIB 10.200 2.576 0.000 0.000 
TRANLIB2 10.200 2.576 0.200 0.000 
DRFM 10.40 2.610 0.200 0 
Ivanov et al (2007)  10.22 2.556 X 0 

HO2 

TRANLIB 107.400 3.458 0.000 0.000 
TRANLIB2 107.400 3.458 1.95 2.090 
DRFM 356.56 3.433 1.950 2.09 
Ivanov et al (2007)  298.3 4.196 X 2.090 

O3 
TRANLIB 180.000 4.100 0.000 0.000 
DRFM X X X X 
Ivanov et al (2007)  106.7 3.467 X 0 
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Figures  

 

Figure 1:  *2.2  versus   for T=200, 400, and 600 K.  Values resulting from the empirical fit of Mason and 

Uribe are very close to those resulting from a Lennard-Jones potential.  The curves are nearly linear over a 
wide range of  . 
Figure 2: Absolute Relative Mean Error Δ versus the potential parameters ε (well depth) and σ (collision 
diameter) for the interaction of N2 with N2. 
Figure 3: Absolute Relative Mean Error Δ versus the potential parameters ε (well depth) and σ (collision 
diameter) for the interaction of O2 with SF6. 
Figure 4: Deviation plot for differences between predicted and experimental viscosity of O2. 
Figure 5: Deviation plot for differences between predicted and experimental viscosity of N2. 
Figure 6:  Deviation plot for differences between predicted and experimental H2O viscosity for TRANLIB and  
DRFM. 
Figure 7: Deviation plot for difference between predicted and experimental viscosity of  NH3 as a function 
of temperature. 
Figure 8: Deviation plot for differences between predicted viscosities of H atom, H2 molecules, and H + H2  
mixtures relative to experimental values. 
Figure 9: Binary diffusion coefficients for binary mixtures of He with three radical species measured and 
computed different ways. 
Figure 10: Deviation plot for differences between predicted (1

st
 order) and experimental viscosity of Ne. 

Figure 11: Deviation plot for differences between predicted (1
st

 order) and experimental viscosity of H2. 
Figure 12: Deviation plot for differences between predicted (1

st
 order) and experimental viscosity of N2. 
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Figure 1:  *2.2  versus   for T=200, 400, and 600 K.  Values resulting from the 

empirical fit of Mason and Uribe are very close to those resulting from a Lennard-Jones 

potential.  The curves are nearly linear over a wide range of  . 

 



 2 

 

Figure 2: Absolute Relative Mean Error Δ versus the potential parameters ε (well depth) 

and ζ (collision diameter) for the interaction of N2 with N2. 



 3 

 

Figure 3: Absolute Relative Mean Error Δ versus the potential parameters ε (well depth) 

and ζ (collision diameter) for the interaction of O2 with SF6. 

Fit: potential parameter couples obtained by fitting to experiment. GM: ε obtained with 

the geometric rule and ζ obtained with the arithmetic rule. HM: ε obtained with the 

harmonic mean and ζ obtained with the arithmetic mean. KR: ε and ζ obtained with 

Kong’s rules. 



 4 

 

Figure 4: Deviation plot for differences between predicted and experimental viscosity of 

O2. 

: MKC/DRFM and : TRANLIB. : MKC/DRFM with fitted parameters from 

Bastien et al. [61]. Experiments are from [79]. 



 5 

 

Figure 5: Deviation plot for differences between predicted and experimental viscosity of 

N2. 

MKC/DRFM: filled symbols. TRANLIB: unfilled symbols. 

Experiments from: /: Seibt et al. (2006) [36], /: Kestin et al. (1977) [34], /: 

Helleman et al. (1973) [79], /: Helleman et al. (1972) [80], /: Kestin et 

al.(1972) [81] and [82]. 
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Figure 6:  Deviation plot for differences between predicted and experimental H2O 

viscosity for TRANLIB, DRFM, and MKC. 

 : TRANLIB.  TRANLIB with dipole moment set to 0. : DRFM. : DRFM with 

dipole moment set to 0. See Table 6 for the potential parameters values used in the 

calculations. 

Experiments are from [83]. 
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Figure 7: Deviation plot for difference between predicted and experimental viscosity of  

NH3 as a function of temperature. 

 : TRANLIB.  TRANLIB with dipole moment set to 0. : DRFM. : DRFM with 

dipole moment set to 0. See Table 6 for the potential parameters values used in the 

calculations. 

Without polar correction, the deviations get so large at low temperatures that they are not 

shown on the plot. 

Experiments are from [84]. 
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Figure 8: Deviation plot for differences between predicted viscosities of H atom, H2 

molecules, and H + H2  mixtures relative to experimental values. 

Thick plain lines are TRANLIB, dashed lines are DRFM, and thin plain lines are the 

calculations by Cheng and Blackshear Jr. [67]. 

 correspond to the viscosity of H.  correspond to the viscosity of H2  correspond to 

the interaction viscosity of H and H2. 

Experimental values by Cheng and Blackshear Jr. [67]. 
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Figure 9: Binary diffusion coefficients for binary mixtures of He with three radical 

species measured and computed different ways. 

The experimental values from Ivanov et al. (2007) are represented by  and the 

corresponding plain line denotes error bars.  indicates calculations by TRANLIB. Δ 

represents calculations by DRFM.  is the calculation by Ivanov et al. (2007) . Binary 

mixture of He + OH:  and its dotted line error bar corresponds to the experiment by 

Bertram et al. (2001) and + and its dotted line error bar corresponds to the experiment by 

Remorov et al. (1996). Binary mixture of He + HO2:  and its dotted line error bar 

corresponds to the experiment by Bedjanian et al. (2004). : values obtained with 

TRANLIB2 . 
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Figure 10: Deviation plot for differences between predicted (1
st
 order) and experimental 

viscosity of Ne. 

The unfilled symbols correspond to viscosities computed with the 2-parameter 

correlation. The filled symbols correspond to viscosities computed the 4-parameter 

correlation. The dots and dashes line corresponds to deviation between the two 

correlations (the 2-parameter one being the reference). The vertical line represents T
*
 = 

10. 

Experiments are from: /: [34], /:[85], / : [86], and /: [87].
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Figure 11: Deviation plot for differences between predicted (1
st
 order) and experimental 

viscosity of H2. 

The unfilled symbols correspond to viscosities computed with the 2-parameter 

correlation. The filled symbols correspond to viscosities computed the 4-parameter 

correlation. The dots and dashes line corresponds to deviation between the two 

correlations (the 2-parameter one being the reference). The vertical line represents T
*
 = 

10. 

Experiments are from: /: [88] and /:[89]. 
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Figure 12: Deviation plot for differences between predicted (1
st
 order) and experimental 

viscosity of N2. 

The unfilled symbols correspond to viscosities computed with the 2-parameter 

correlation. The filled symbols correspond to viscosities computed the 4-parameter 

correlation. The dots and dashes line corresponds to deviation between the two 

correlations (the 2-parameter one being the reference). The vertical line represents T
*
 = 

10. 

Experiments are from: /: [36], /: [34], /: [85], and /: [81]. 

       

 



50 150 250 350

1.0

1.5

2.0

2.5

εε

ΩΩ
22

*((T
εε))

T=200

T=400

T=600

Lennard−Jones
Mason and Uribe

Figure 1



Well
 D

ep
th 

(K
)

80
90

100
110

120

Collision Diameter (Å) 3.2
3.4

3.6
3.8

4.0

A
bsolute M

ean R
elative E

rror (%
)

10

20

30

40

Figure 2



Well Depth (K) 120
140

160
180

Collis
ion Diameter (Å

)3.5
4.0

4.5
5.0

A
bsolute M

ean R
elative E

rror (%
)

5

10

15

20

25

●Fit ●

GM
●

HM ●KR

Figure 3



300 500 700

−3
−2

−1
0

Temperature (K)

D
ev

. f
ro

m
 e

xp
. o

f η
O

2 (
%

)

●
●
●
●
●

●
●

●
● ● ●

●

Figure 4



300
500

700
900

−0.5 0.0 0.5 1.0

Tem
perature (K

)

Dev. from exp. of ηN2 (%)

●

●
●
●
●

●

●
●
●

●
●
●

Figure 5



300 340 380 420

−4
0

0
40

80

Temperature (K)D
ev

. f
ro

m
 e

xp
. o

f η
H

2O
 (%

)

● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●

Figure 6



300
400

500
600

0 10 20 30 40

Tem
perature (K

)

Dev. from exp. of ηNH3 (%)

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

Figure 7



−72
0

56
100

−20 20 60

Tem
perature (°C

)

Deviation from experiment (%)
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

Figure 8



S
pecies interacting w

ith H
e

Binary Diffusion Coeff. (cm2.s−1)

O
H

H
O

2
O

3

400 600 800

●

●

●
●

●

Figure 9



500 1500

−1
0

1
2

Temperature (K)Temperature (K)

D
ev

. f
ro

m
 e

xp
. o

f η
N

e 
(%

)

●●

●
●
●●●

●●

●●

●
●
●●●

●●

Figure 10



200 300 400 500

−1
0

1

Temperature (K)Temperature (K)

D
ev

. f
ro

m
 e

xp
. o

f η
H

2 (
%

)
●

●
●
●
●
●
●
●●

●

●

●
●●
●

●

●
●
●
●
●
●
●●
●
●

●
●●
●

Figure 11



500 1000 2000

−2
−1

0
1

Temperature (K)Temperature (K)

D
ev

. f
ro

m
 e

xp
. o

f η
N

2 (
%

)
●●●
●●●

Figure 12



i ai1 ai2 bi1 bi2 

1 0.18 0 0 0 

2 0 0 0 0 

3 -1.20407 -0.195866 10.0161 -10.5395 

4 -9.86374 20.2221 -40.0394 46.0048 

5 16.6295 -31.3613 44.3202 -53.0817 

6 -6.73805 12.6611 -15.2912 18.8125 

 

Table 1



 ai (noble and polyatomic gases) bi (noble gases) bi (polyatomic gases) 

0 0.46641 0.357588 0.295402 

1 -0.56991 -0.472513 -0.510069 

2 0.19591 0.0700902 0.189395 

3 -0.03879 0.016574 -0.045427 

4 0.00259 -0.00592022 0.0037928 

 

Table 2



i ai1 ai2 ai3 ai4  

1 -33.0838 20.0862 72.1052 8.27648  

2 101.571 56.4472 286.393 17.7610  

3 -87.7036 46.3130 277.146 19.0573  

i bi1 bi2 bi3 bi4 ci 

2 -267.00 201.570 174.672 7.36916 1 

4 26700 -19.2265 -27.6938 -3.2955 10
3
 

6 -8.910
5
 6.31013 10.2266 2.33033 10

5 

 

Table 3



 ε (K) σ (Ǻ) 

 TRANLIB DRFM TRANLIB DRFM 

Ar 136.500 143.20 3.330 3.350 

O2 107.400 121.1 3.458 3.407 

N2 97.530 98.4 3.621 3.652 

CO2 244.000 245.3 3.763 3.769 

CH4 141.400 161.4 3.746 3.721 

H2O 572.400 535.21 2.605 2.673 

NH3 481.000 282.2
1
 2.290 3.30

1
 

HO2 107.400 365.56 3.458 3.433 

OH 80.000 281.27 2.750 3.111 

H2O2 107.400 368.11 3.458 3.499 

 

                                                 
1 Fitted values  

Table 4



 μ (Debye) α (Ǻ
3
) 

 TRANLIB DRFM TRANLIB DRFM 

Ar 0.000 0 0.000 1.642 

O2 0.000 0 1.600 1.600 

N2 0.000 0 4.000 1.750 

CO2 0.000 0 2.650 2.65 

CH4 0.000 0 2.600 2.60 

H2O 1.844 1.847 0.000 1.450 

NH3 1.470 1.4718
1
 0.000 2.81

1
 

HO2 0.000 2.09 0.000 1.950 

OH 0.000 1.655 0.000 0.980 

H2O2 0.000 1.573 0.000 2.230 

 

                                                 
1
 Value taken from reference [66] 

Table 5



  ε (K) σ (Ǻ) μ (Debye) α (Ǻ
3
) 

H2O 

TRANLIB 572.4 2.61 1.844 0 

TRANLIB, without polar correction 572.4 2.61 0 0 

DRFM 535.2 2.67 1.847 1.45 

DRFM, without polar correction 535.2 2.67 0 0 

NH3 

TRANLIB 481.0 2.92 1.47 0 

TRANLIB, without polar correction 481.0 2.92 0 0 

DRFM 
 

282.2
1
 

 3.30
1
 1.4718

2
 0.281

2
 

DRFM, without polar correction 282.2 3.30 0 0 

 

                                                 
1
 Fitted value 

2
 Value taken from reference [66] 

Table 6



 OH and He HO2 and He O3 and He 

TRANLIB 673.4 553.0 424.2 
DRFM 636.7 526.9 X 
Measured by Ivanov et al (2007) [69] 662 ± 33 430 ± 30 410 ± 25 
Computed by Ivanov et al (2007) [69] 636.7 407.3 425.4 
From Remorov et al. (1996) [70]  609 ± 250 X X 
From Bertram et al. (2001) [71] 665 ± 35 X X 
From Bedjanian et al. (2004) [72] X 405 ± 50 X 
TRANLIB2 666.3 552.6 X 

 

Table 7



 ε (K) σ (Å) α (Å3) μ (Debye) 

OH 

TRANLIB 80.000 2.750 0.000 0.000 
TRANLIB2 572.40 2.605 0.98 1.74 
DRFM 281.27 3.111 0.980 1.655 
Ivanov et al (2007) [69] 809.1 2.641 X 1.74 

He 

TRANLIB 10.200 2.576 0.000 0.000 
TRANLIB2 10.200 2.576 0.200 0.000 
DRFM 10.40 2.610 0.200 0 
Ivanov et al (2007)  10.22 2.556 X 0 

HO2 

TRANLIB 107.400 3.458 0.000 0.000 
TRANLIB2 107.400 3.458 1.95 2.090 
DRFM 356.56 3.433 1.950 2.09 
Ivanov et al (2007)  298.3 4.196 X 2.090 

O3 
TRANLIB 180.000 4.100 0.000 0.000 
DRFM X X X X 
Ivanov et al (2007)  106.7 3.467 X 0 

 

Table 8


