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Material Prop3. Material Properties: Measurement and Data

The density of a fluid is defined as the mass
of the fluid per unit volume. Some methods
of measuring the density of the fluid with
high precision determine the variation of one
quantity in this ratio when the other is fixed
and a further state variable is altered. Other
methods make use of the effect of the fluid
density on the position or motion of a rigid
body contained within it. Examples of these
instruments are described in this chapter for op-
eration over a wide range of thermodynamic
states.
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3.1 Density

The density ρ is defined as the mass of unit volume
of a substance under prescribed conditions. The density
varies with pressure and temperature, the variation with
respect to both variables being much greater in gases
than liquids.

The specific gravity (SG), also termed the rela-
tive density, is determined by dividing the density of
the substance by the density of a standard substance
obtained under the same conditions of tempera-
ture and pressure. In particular, the usual definitions
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86 Part B Measurement of Primary Quantities

are

Liquid SG = density of liquid

density of water
(3.1)

Gas SG = density of gas

density of air
(3.2)

Commonly accepted sets of reference conditions
are

• normal temperature and pressure (NTP), usually
taken as the temperature at 0.00 ◦C and a pressure of
760 mmHg, and• standard temperature and pressure (STP), usually
taken as the temperature at 15.00 ◦C and a pressure
of 0.101325 MPa.

Despite the apparent simplicity of its definition, the ac-
curate measurement of the density of fluids is complex
and many novel techniques have been developed. Spe-
cial care is required in measurements at high pressures
in either phase while the hazards associated with op-
eration in the gas phase, when the stored energy in
a system is large, add to the complexity of experimental
work considerably. In this chapter, modern techniques
for the measurement of density will be presented, and
emphasis will be given to those techniques that cover
very wide temperature and pressure ranges, with low
uncertainty.

3.1.1 Piezometers

Densimeters that employ magnetic-suspension or
vibrating-element techniques, which will be discussed
later in this chapter, now provide more-convenient
methods for achieving a low level of uncertainty in
the measurement of density. However, piezometers have
been used extensively in the past because of their
simplicity and high accuracy when used with care.
Piezometers can be divided into three categories:

1. devices that measure the amount of mass or amount
of substance within a fixed volume,

2. devices that determine the change in pressure ef-
fected by a change in volume, and

3. devices that utilize one or more expansions from one
volume to another.

Fixed-Volume Piezometers
In fixed-volume devices, the mass or amount of sub-
stance in a known volume is measured at a temperature
and pressure that are determined independently. To de-
termine the mass of the sample the container is often

weighed directly with and without the sample present.
Alternatively, if the fluid is a gas, it may be allowed
to expand into a much larger volume so that the final
conditions are near ambient, when a relatively simple
equation of state can be used to evaluate the amount of
substance present.

The instrument shown in Fig. 3.1, made out of Pyrex
glass, was employed for measurements of the saturated
density of liquid refrigerants up to 10 MPa pressure with
an estimated uncertainty of 0.3% [3.1]. It consists of
a vessel connected to a capillary. The capillary is used
to define the exact volume of the liquid, thus giving high
resolution when filling the piezometer. Following evacu-
ation of the piezometer, it is weighed. The sample is then
introduced, degassed, and the device disconnected from
the filling line. The mass of the sample was obtained
by weighing again, while its volume by observing the
liquid level in the tube.

Hwang and coworkers [3.2] developed a continu-
ously weighed piezometer, based on an earlier apparatus
developed by Machado and Street [3.3]. Hwang’s
piezometer consists of a weight measurement system,
an isothermal bath with a temperature control and meas-
urement system, a sample pressurizing system, and
a high vacuum system. The sample is introduced into the
piezometer vessel of known volume via a flexible capil-
lary feed line. The mass of the piezometer plus fluid is
then determined with an electronic force balance from
which it is suspended at all times. In general, fixed vol-
ume devices are capable of density measurements with
an uncertainty of ±0.1% or better, depending upon the
fluid properties.

Fixed-volume cells have been used to great effect
over a wide range of conditions. Kubota et al. [3.4]
employed a fixed-volume cell charged with a known
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Fig. 3.1 Fixed-
volume
piezometer (af-
ter [3.1])
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Fig. 3.2 High-temperature pycnometer, developed by Sato
et al. [3.5]

mass of sample for the measurement of the density of
refrigerants up to 100 MPa pressure. Sato et al. [3.5] op-
erated a high-temperature pycnometer (Fig. 3.2) made
of boron nitride, for the measurement of the density of
molten silicon. In this case, the pycnometer containing
a cylindrical sample of solid silicon was supported by
a graphite rod and installed at the appropriate position
on an alumina support tube (Fig. 3.2) inside the furnace.
Then the upper part (cap) of the pycnometer had been
partially inserted into the lower part during assembly.
After the silicon melted, the apparatus was temporarily
evacuated and the alumina push tube was lowered slowly
to push the upper part of the pycnometer into position in
the lower part. This caused the excess of molten silicon
now in the pycnometer to overflow, leaving it exactly
full and containing a defined volume. The mass of the
sample is determined by subsequent weighing outside
of the furnace. Sato et al. [3.5] reported density meas-
urements up to 1850 K with an estimated uncertainty of
better than 0.5%. However, at such high temperatures
the difficulties of measurement generally mean that the
discrepancies between investigators exceed their mu-
tual quoted uncertainties so that it is not yet possible to
confirm the estimate of error in this case.

Variable-Volume Piezometers
Variable-volume devices are characterized by sample
cells that change in volume during the experiment. The
change in volume is usually achieved using bellows (see
next section) or pistons. Some older devices employed
mercury as a liquid piston (e.g., Goodwin et al. [3.6]) but
environmental and safety considerations now discour-

age the use of mercury in large quantities. New designs
for piston devices have recently been employed [3.7].
However, the variable volume devices are generally less
accurate than other methods, with uncertainties of about
±1%, and thus are not described further here.

Expansion Piezometers
The basic principle of expansion devices is that the sam-
ple is expanded from one volume into a second volume
(usually evacuated), and the ratio of the original vol-
ume to the final volume establishes the ratio of densities
before ρ0 and after expansion ρf with

ρ0

ρf
= Va + Vb

Va
= r , (3.3)

where, Va is the volume occupied by the fluid before the
expansion, (Va + Vb) is the volume after the expansion
and r is the cell constant. The device may utilize either
a single expansion (large r) or a series of expansions.

Single expansion devices employ volume ratios r
ranging from 50 to 1000 so that a pressure near at-
mospheric results from the expansion. The final molar
density can then be calculated from the temperature and
pressure using a simple virial equation of state. Once
the final density is known, the original density ρ0 can
be calculated from (3.3), or the amount of substance
by multiplying the final density by the total volume of
the system. Single expansion devices have been recently
described by Duarte et al. [3.8].

The most common multiple expansion method is
that developed by Burnett [3.9], recently successfully
applied by Stouffer [3.10]. These techniques have the
advantage that neither mass nor volume need to be
measured directly. Only pressure and temperature are
measured before and after the expansion from a sin-
gle volume into the combination of the original volume
and an additional one. Although the technique is usu-
ally not an absolute technique, the uncertainty in the
measurement of the density is often better then ±0.05%.

3.1.2 Bellows-Type Densimeters

Bellows-type densimeters are cells that contain and en-
close the sample fluid. The entire cell, or at least a part
of it, is a flexible bellows, which transmits the pressure
on the outside of the cell to the test fluid. The pres-
sure can be exerted and measured on the outside of the
flexible cell through another pressure transmitting fluid
which itself can be pressurized by a piston pump. The
linear movement of the end of a bellows of constant
cross section is measured to determine the compression
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Fig. 3.3 High-pressure bellows-type pycnometer, devel-
oped by Dymond et al. [3.11, 12]

of the fluid in the measuring cell caused by the applied
pressure.

The instrument shown in Fig. 3.3, is a bellows-type
densimeter, employed by Dymond et al. [3.11, 12], for
the measurement of the density of hydrocarbons up
to 600 MPa with an estimated uncertainty of 0.1%.
A known amount of liquid sample is introduced into
the sealed metal bellows. In this case the movement of
the bellows’ end is determined using the magnetic in-
duction between an inductive tip mounted on a rod that
is itself attached to the end of the bellows and an exter-
nal detector coil. Measurement of the movement of the
detector coil along the tube to secure a constant induc-
tion serves to determine the position of the end of the
bellows. Bellows densimeters have been employed by
various investigators. Iso and Uematsu [3.13] employed
such a densimeter for the measurement of the density of
refrigerants up to 10 MPa pressure.

3.1.3 Vibrating-Element Densimeters

If a solid, elastic body containing (or surrounded by)
a fluid is driven to oscillate, then the frequency of reso-
nance of the solid/fluid assembly will depend upon the
properties of the fluid and, in particular its density ρ. The
resonant frequency will also depend upon the properties
of the solids involved and, in particular, upon a modulus
K of the solid oscillator of mass M, whose elastic distor-
tion yields the oscillatory behavior. As a result, for any

form of solid/fluid oscillator of this kind we can write
an expression for the resonant frequency f as [3.14]

f =
√

K

(M + kρ)
, (3.4)

where k is characteristic of the particular arrangement
of the oscillator. Evidently, if it is possible to calculate,
or measure, K and k independently then measurement
of the resonant frequency of the oscillation can yield the
density of the test fluid.

A common feature of all types of vibrating element
densimeters is the need to excite the vibration of the
solid element and to observe its resonant frequency.
There are two mechanisms usually employed for this
purpose [3.14].

Magnetic drive of the vibrating element can be
achieved by means of small coil assemblies mounted
within or upon the vibrating element and forced into
motion by application of electric currents in fixed driv-
ing coils. Detection of motion can be accomplished in
the same way by the same or a different set of coils. If
a steady drive is desired, the signals picked up by the
sensors are amplified and fed back as a drive to maintain
the disturbing forces on the vibrating body of the me-
ter. This mechanism can actually be made to self-tune to
the resonant frequency of the oscillator automatically if
the resonance is sufficiently sharp. The main advantage
of the magnetic drive and pickup systems is that they
are noncontact methods; they use conventional copper
windings and they are usable within the temperature
range of −200 to +200 ◦C.

Alternatively, there is a wide range of piezoelec-
tric materials that allow the direct application of an
electric current to a solid so as to causes an elastic dis-
tortion. These materials demonstrate good temperature
characteristics and have the advantage of being low in
cost. They have a relatively high impedance, making
the signal conditioning circuitry easy, unlike the cir-
cuitry for electromagnetic sensors. Piezoelectric drives
are mechanically affixed to the vibrating body by adhe-
sives. Therefore, attention must be paid to the careful
placement of the mount in order to reduce the strain ex-
perienced by the piezo element owing to the thermal and
pressure stresses to which the element is subjected dur-
ing operation over ranges of temperature and pressure.
A number of different types of densimeters have been
developed that utilize vibrating elements and the most
common ones are [3.14]:

1. Vibrating-tube densimeters are suitable for opera-
tion with a wide range of fluids from gases to liquids
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as well as to slurries. Commercial instruments using
this principle are widely available and are frequently
used in research laboratories and industrial monitor-
ing. The mode of operation is based on the transverse
vibration of a single circular section tube constrained
to vibrate in a single plane.

2. Vibrating-cylinder densimeters are ideal for liquified
gas products or refined liquids.

3. Tuning-fork densimeters make use of the natural fre-
quency of low-mass tuning forks. In some cases, the
fluid is taken into a small chamber in which the elec-
tromechanically driven forks are situated, or in other
cases the fork is inserted directly into the liquid.

In the vibrating-tube densimeter the basic measure-
ment to be made is of the resonant frequency of the
tubular oscillator filled with the fluid whose density is
to be measured. The mass of fluid inside the oscillator
determines the change of the resonant frequency of os-
cillation from that obtained when the tube is filled with
another fluid or even in vacuo. Thus, by measuring this
change of frequency it is possible to obtain the mass
that fills the tube volume and therefore the density of
the sample. In practice, the configuration of the tubu-
lar oscillator is generally chosen in the form of a ‘V’ or
a ‘U’ so as to define precisely a single mode of oscil-
lation. For that reason it is not usual to seek to perform
absolute measurements with the densimeter using a fun-
damental theory. Instead one begins with the equation
that derives from the simple phenomenological theory
that arises from (3.4) so that

ρ = Aτ2 − B , (3.5)

where τ is the measured period of vibration for the tube
when filled with a fluid of density ρ, and A and B cal-
ibration parameters of the densimeter, which may be
functions of pressure and temperature. The values of A
and B have to be obtained by the use of two fluids of
known density, ρ1 and ρ2, as calibrants under the same
conditions of temperature and pressure. Equation (3.5)
can then be rewritten to eliminate A and B, in the form

ρ = (ρ1 −ρ2)
(
τ2 − τ2

2

)
(
τ2

1 − τ2
2

) +ρ2 , (3.6)

where τ1 and τ2 are the periods of vibration of the tube
when filled with calibrants 1 and 2, respectively, at the
same temperature and pressure as the sample liquid. For
the best vibrating tube densimeters the dependence on
temperature and pressure of the two instrument constants
is rather small and, if modest accuracy is sought, it is
possible to treat them as constants. However, for the
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Fig. 3.4 Vibrating-tube densimeter, developed by Hynek
et al. [3.15]

highest accuracy it is always best to use the full form of
(3.6) at each thermodynamic state.

Vibrating-tube densimeters have been employed by
a large number of investigators. A very small sample
of the applications is listed here. Hynek et al. [3.15]
constructed a vibrating-tube densimeter (Fig. 3.4) for
measurements with corrosive solutions at temperatures
up to 723 K and pressures up to 40 MPa, with an un-
certainty of about 0.5%. A similar vibrating U-tube was
developed by Blencoe et al. [3.17] for measurements of
the density up to 200 MPa. Similar devices have been
employed for the measurement of the density of re-
frigerants, for example, Defibaugh and Morrison [3.18]
employed such an instrument for the measurement of
the density of refrigerant R22 from 253 to 373 K and
up to 6.2 MPa with an estimated uncertainty of 0.05%.
Sousa et al. [3.19] measured the density of refrigerant
R142b from 293 to 403 K and pressures up to 17 MPa.
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Fig. 3.5 Vibrating-wire densimeter, developed by Padua
et al. [3.16]
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Fig. 3.6 Buoyancy-type densimeter

Their estimated uncertainty was 1% for the liquid phase
and 3% for the vapor phase.

A special category of vibrating-element densimeters
is the vibrating-wire densimeter. Such an instrument is
shown in Fig. 3.5. In this case, the vibrating element
comprises a thin metallic wire of radius R and length
2L with the top end fixed and a solid cylindrical weight
of volume Vw suspended from the lower end. The wire
is placed in a uniform permanent magnetic field gener-
ated by two rare-earth magnets. The motion of the wire
is driven by the application of an oscillatory current in
the wire. Variation of the frequency of the driving cur-
rent with the aid of an impedance analyzer, or in some
other way, can be used to find the resonant frequency.
The presence of the sample fluid around the vibrating
wire contributes to the change in the resonant frequency
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Fig. 3.7 Principle of the new single-sinker densimeter, de-
veloped by Klimeck et al. [3.20]

from that observed when the wire vibrates in vacuo. The
largest single effect of the fluid is a result of the buoy-
ancy force acting on the suspended weight. However,
there is a minor effect caused by the fluid flow around
the vibrating wire. According to the theory of such a de-
vice, treated in detail elsewhere [3.21, 22], the resonant
frequency of the wire can be expressed in terms of the
density of the fluid as well as its viscosity, together
with the radius of the wire, the density of its mater-
ial, the volume of the suspended weight and the density
of the material from which the weight is constructed.
Many of these quantities are amenable to direct, inde-
pendent measurement but some are not. In particular,
the measurements of the wire radius and of its density
are usually not accomplished with sufficient accuracy
by independent means. For that reason these two quan-
tities are usually determined by calibration using two
fluids of known density and viscosity. This needs to be
done only at one thermodynamic state since changes
with temperature and pressure are readily evaluated for
other conditions.

The first attempts to build densimeters based on
the vibrating-wire sensor and designed according to
the theory of the vibrating wire took place in the
group of Wakeham at Imperial College, London, around
1990 [3.23], where the most recent version of the
hydrodynamic model has also been formulated. A sec-
ond version of the vibrating-wire densimeter was built
at the Instituto Superior Tecnico, Lisbon, initially as
a pure densimeter [3.16]. This design is shown in
Fig. 3.5. A 100 µm-diameter tungsten wire was em-
ployed, while a top triangular clamping ensured the
predominance of the first vibrational mode of motion.
The uncertainty in the density measurements achieved
with this instrument is ±0.05% at the 95% confi-

Table 3.1 Reference values for the density (kg m−3) of
water and steam

Pressure (MPa)
T (◦C) 0.1 1 5 10

0.1 999.8 1000 1002 1005

10 999.7 1000 1002 1004

25 997.0 997.5 999.2 1001

50 988.0 988.4 977.0 992.3

75 974.8 975.1 977.0 979.2

100 0.5897 958.8 960.6 962.9

200 0.4603 4.854 867.3 870.9

300 0.3790 3.876 22.05 715.3

500 0.2805 2.824 14.58 30.48

700 0.2227 2.233 11.30 22.94
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Table 3.2 Density ρ (kg m−3) of some n-alkanes in the liquid phase

P (MPa) 273.15 K 298.15 K 323.15 K 348.15 K 373.15 K

n-Pentane C5H12 0.101 645.7 621.2 595.5 568.0 537.7

5 650.8 627.5 603.4 577.8 549.4

10 655.6 633.4 610.5 586.3 559.3

25 668.4 648.5 628.3 606.9 582.2

50 685.8 668.2 650.5 631.5 608.6

n-Hexane C6H14 0.101 677.2 654.9 631.7 607.3 581.4

5 681.6 660.2 638.2 615.3 591.0

10 685.8 665.2 644.2 622.5 599.6

25 697.2 678.5 659.6 640.4 620.1

50 713.1 696.4 679.8 662.9 645.0

n-Heptane C7H16 0.101 700.5 679.5 657.9 635.6 612.1

5 704.5 684.2 663.5 642.3 620.3

10 708.3 688.7 668.8 648.6 627.7

25 718.8 700.8 682.7 664.6 646.2

50 733.7 717.4 701.4 685.4 669.3

n-Octane C8H18 0.101 718.7 698.7 678.2 657.2 635.3

5 722.4 703.0 683.3 663.2 642.6

10 726.0 707.2 688.2 668.9 649.3

25 736.0 718.5 701.1 683.8 666.3

50 750.2 734.3 718.7 703.4 688.2

n-Nonane C9H20 0.101 733.1 713.9 694.2 674.1 653.4

5 736.6 717.9 699.0 679.7 660.1

10 740.1 721.9 703.5 685.0 666.3

25 749.6 732.6 715.7 698.9 682.1

50 763.3 747.8 732.5 717.6 702.9

n-Decane C10H22 0.101 745.1 726.2 707.2 687.8 668.0

5 748.5 730.1 711.7 693.1 674.2

10 751.8 733.9 716.0 698.0 680.0

25 760.9 744.2 727.6 711.2 695.0

50 774.3 758.9 743.8 729.2 714.9

n-Undecane C11H24 0.101 754.8 736.5 718.0 699.2 680.0

5 758.1 740.2 722.3 704.2 685.8

10 761.3 743.9 726.4 708.9 691.2

25 770.2 753.8 737.6 721.5 705.5

50 783.2 768.1 753.3 738.9 724.8

n-Dodecane C12H26 0.101 763.4 745.3 727.0 708.5 689.6

5 766.6 748.9 731.1 713.2 695.1

10 769.7 752.4 735.1 717.7 700.3

25 778.4 762.1 745.9 729.8 714.0

50 791.2 776.0 761.2 746.7 732.6

dence level. The design was later adapted to measure
the viscosity simultaneously along with a more re-
fined theory [3.24]. The latest vibrating-wire instrument

of this type was built at the University Blaise-Pascal.
Clermont-Ferrand, France, incorporating a number of
improvements [3.25].
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Table 3.3 Density ρ (kg m−3) of some alkenes in the liquid phase

P (MPa) 273.15 K 298.15 K 323.15 K 348.15 K 373.15 K

Benzene C6H6 0.101 899.8 873.6 846.8 819.2 790.8

5 903.4 877.7 851.6 824.9 797.6

10 906.9 881.8 856.3 830.4 804.0

25 916.7 892.9 869.1 845.1 820.8

50 931.1 909.1 887.2 865.3 843.3

Toluene C7H8 0.101 885.8 862.3 838.7 814.8 790.5

5 889.1 866.2 843.2 820.1 796.8

10 892.4 870.0 847.6 825.2 802.8

25 901.6 880.4 859.5 839.0 818.8

50 915.3 895.7 876.6 858.1 840.3

Ethylbenzene C8H10 0.101 883.4 862.6 840.8 817.9 793.9

5 886.7 866.3 845.1 823.1 800.0

10 889.8 869.9 849.3 828.0 805.9

25 898.8 880.1 860.9 841.3 821.3

50 912.1 894.9 877.5 860.0 842.3

o-Xylene C8H10 0.101 898.0 876.5 854.9 833.2 811.5

5 900.9 879.8 858.7 837.7 816.6

10 903.9 883.1 862.5 842.0 821.6

25 912.2 892.4 872.9 853.8 835.0

50 924.6 906.1 888.1 870.6 853.7

m-Xylene C8H10 0.101 879.6 860.0 839.4 817.6 794.5

5 882.8 863.7 843.7 822.7 800.6

10 886.0 867.4 848.0 827.7 806.5

25 894.9 877.5 859.5 841.0 821.9

50 908.1 892.3 876.1 859.7 843.0

p-Xylene C8H10 0.101 875.6 855.8 834.9 812.9 789.5

5 878.9 859.5 839.2 818.0 795.6

10 882.0 863.1 843.4 822.9 801.5

25 890.9 873.2 855.0 836.2 816.9

50 904.1 888.0 871.5 854.8 837.8

Mesitylene C9H12 0.101 880.7 860.7 840.2 819.2 797.6

5 883.8 864.1 844.2 823.9 803.2

10 886.8 867.6 848.1 828.4 808.5

25 895.3 877.1 859.0 840.8 822.8

50 907.9 891.2 874.6 858.3 842.4

3.1.4 Buoyancy-Type Densimeters

The buoyancy method basically makes use of
Archimedes’ principle. A suspended sinker (Fig. 3.6)
with a known mass and volume is attached to a fine wire,
and is totally immersed in the sample liquid. A precision
force balance is used to measure the force to support the
sinker. Once the mass, volume, and supporting weight
of the sinker are known, the density of the liquid can
be calculated. The principle is rather straightforward for
liquids at atmospheric pressure where containment of

the liquid sample is simple and attachment of a thread to
a force balance causes no breach of a sealed container.
However, even in these simple circumstances, some cor-
rections need to be made for the force exerted by surface
tension on the suspension wire and for the volumetric
thermal expansion coefficient of the sinker. When used
with great care buoyancy-type densimeters can yield
results of great accuracy.

An advanced version of the buoyancy technique is
the magnetic suspension system. Klimeck et al. [3.20]
developed an advanced single-sinker densimeter em-
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Table 3.4 Density ρ (kg m−3) of some n-alcohols in the liquid phase

P (MPa) 273.15 K 298.15 K 323.15 K 348.15 K 373.15 K

Methanol CH4O 0.101 810.0 786.5 762.5 737.6 710.8

5 814.0 791.3 768.2 743.9 717.3

10 818.0 796.0 773.6 749.8 723.5

25 828.9 808.7 787.9 765.4 739.5

50 844.6 826.4 807.5 786.4 760.8

Ethanol C2H6O 0.101 806.3 785.0 763.1 739.6 713.8

5 809.9 789.2 767.8 744.8 719.1

10 813.4 793.2 772.3 749.7 724.2

25 823.1 804.3 784.6 762.9 737.7

50 837.2 820.0 801.9 781.2 756.1

1-Propanol C3H8O 0.101 819.1 799.5 779.0 756.8 732.4

5 822.5 803.4 783.5 761.8 737.7

10 825.8 807.2 787.8 766.6 742.8

25 835.0 817.7 799.6 779.6 756.4

50 848.5 832.9 816.3 797.6 775.1

1-Butanol C4H10O 0.101 824.6 805.8 786.2 765.2 742.3

5 827.7 809.4 790.3 769.9 747.5

10 830.8 812.9 794.4 774.5 752.5

25 839.4 822.8 805.5 786.8 765.8

50 852.2 837.1 821.4 804.1 784.1

1-Pentanol C5H12O 0.101 828.9 811.0 792.1 772.1 750.4

5 831.9 814.3 796.0 776.5 755.4

10 834.8 817.7 799.8 780.9 760.2

25 842.9 826.9 810.4 792.6 773.1

50 855.1 840.5 825.5 809.2 790.9

1-Hexanol C6H14O 0.101 833.0 815.3 797.1 778.2 758.2

5 835.8 818.5 800.8 782.4 763.0

10 838.6 821.7 804.5 786.6 767.6

25 846.4 830.6 814.5 797.8 780.1

50 858.1 843.6 829.1 813.9 797.6

1-Heptanol C7H16O 0.101 836.4 819.1 801.1 782.3 762.5

5 839.1 822.2 804.6 786.3 767.1

10 841.7 825.2 808.1 790.3 771.6

25 849.3 833.8 817.8 801.2 783.7

50 860.6 846.4 831.8 816.7 800.7

1-Octanol C8H18O 0.101 838.8 821.7 804.1 785.5 766.0

5 841.4 824.7 807.5 789.5 770.5

10 844.0 827.7 810.8 793.3 774.8

25 851.4 836.0 820.2 803.9 786.7

50 862.4 848.3 833.9 819.0 803.3

ploying a magnetic suspension system (Fig. 3.7). The
magnetic suspension coupling consists of an electro-
magnet, a permanent magnet, a position transducer, and
a control system. The electromagnet is attached at the

underfloor weighing hook of a commercial analytic
balance. Inside the coupling housing there is a per-
manent magnet to which the sinker to be weighed is
linked by means of a load coupling and decoupling de-
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Table 3.5 Density ρ (kg m−3) of some refrigerants in the liquid phase

P (MPa) 248.15 K 273.15 K 298.15 K 323.15 K 348.15 K

R22 CHClF2 5 1375 1299 1214 1113 975.0

10 1386 1315 1238 1149 1043

25 1416 1355 1290 1217 1140

R32 CH2F2 5 1148 1070 980.7 865.0

10 1162 1088 1006 910.1 857.7

25 1194 1128 1058 982.3 1019.8

R124 C2HClF4 5 1518 1450 1380 1303 1202

10 1526 1462 1402 1338 1247

25 1547 1496 1454 1408 1330

R125 C2HF5 5 1447 1349 1236 1086

10 1466 1376 1279 1167

25 1510 1436 1359 1282

R134a C2H2F4 5 1386 1312 1229 1135 1017

10 1399 1328 1252 1168 1075

25 1432 1368 1302 1234 1166

R141b C2H3ClF2 5 1328 1287 1244 1197 1147

10 1333 1294 1253 1209 1163

25 1345 1311 1276 1239 1200

R152a C2H4F2 5 1022 971.3 914.8 850.7 774.1

10 1030 981.9 929.4 871.9 808.5

25 1051 1008 962.8 915.6 867.3

vice. The upper part of the coupling housing which
separates the permanent magnet from the electromag-
net is manufactured of a magnetically neutral metal,
namely copper beryllium. To achieve the freely sus-
pended state of the permanent magnet, its absolute
position is detected by a position sensor and controlled
via a proportional–integral–differential controller. By
means of a superimposed set-point controller and an ad-
ditional control system, several vertical motions of the
permanent magnet are generated automatically. In this
way, soft up- and downward movements of the perma-
nent magnet can be realized, and via the load coupling
and decoupling device the solid quartz glass cylinder
working as sinker can be coupled and decoupled.

In the tare position, the permanent magnet is sus-
pended at a relatively large distance from the top of the
coupling housing, the sinker is decoupled from the per-
manent magnet, and the balance can be tared to zero. In
order to achieve the measuring position, the electronic
control unit of the magnetic suspension coupling brings
the permanent magnet closer to the top of the coupling
housing. This means that the bearing cone also moves
upwards and takes the measuring load cage with which
the sinker is connected. In this way, the sinker is coupled
with the balance and can be weighed.

In order to measure the density of the fluid in the
measuring cell, the sinker is coupled and decoupled
several times (changes between the tare and measuring
position), so that the buoyancy force upon the sinker can
be more accurately determined by averaging. Then, the
density of the fluid can be determined from the simple
relation,

ρ = (ms −ms,fluid)

Vs(T, P)
. (3.7)

In this equation, ms is the true mass of the sinker
(weighed in the evacuated measuring cell), ms,fluid is
the apparent mass of the sinker (weighed in the fluid-
filled measuring cell), and Vs(T, P) is the temperature
and pressure dependent volume of the sinker.

This instrument was successfully employed for
many measurements over a very wide range of con-
ditions with an uncertainty of better than 2 × 10−4ρ.

The group in Bochum, headed by Prof. W. Wagner,
also has other types of densimeter based upon similar
principles. Here, we only mention two other very suc-
cessful designs. The two-sinker densimeter developed
by Kleinrahm and Wagner [3.26] in 1986 automatically
compensated all incidental effects (such as the zero-
point shift of the balance, buoyancy forces on auxiliary
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Table 3.6 Density ρ (kg m−3) of some gases

P (MPa) 273.15 K 298.15 K 323.15 K 348.15 K 373.15 K

Argon Ar 0.101 1.778 1.628 1.502 1.394 1.300

5 91.75 82.71 75.39 69.36 64.30

10 189.1 168.1 151.7 138.6 127.8

Hydrogen H2 0.101 0.089 0.082 0.075 0.070 0.065

5 4.23 3.89 3.60 3.35 3.13

10 8.09 7.46 6.92 6.46 6.06

Nitrogen N2 0.101 1.246 1.141 1.052 0.997 0.911

5 62.44 56.47 47.64 47.64 44.26

10 124.4 111.6 101.5 93.3 86.5

Oxygen O2 0.101 1.424 1.304 1.203 1.116 1.041

5 73.67 66.36 60.48 55.63 51.55

10 152.2 135.1 121.8 111.2 102.6

Carbon monoxide CO 0.101 1.246 1.141 1.052 0.977 0.911

5 62.94 56.82 51.89 47.82 44.40

10 126.1 112.8 102.3 93.9 86.9

Carbon dioxide CO2 0.101 1.970 1.802 1.660 1.540 1.436

5 130.52 104.46 90.21 80.48

10 379.6 230.6 186.9

Sulfur dioxide SO2 0.101 2.908 2.649 2.435 2.254 2.099

Hydrogen sulfide H2S 0.101 1.532 1.4 1.29 1.195

5 85.78

Methane CH4 0.101 0.715 0.655 0.604 0.56 0.522

5 40.05 35.3 31.73 28.91 26.61

10 89.6 75.7 66.4 59.5 54.1

Ethane C2H6 0.101 1.351 1.235 1.137 1.054 0.982

5 91.8 70.97 60.53

10 314.7 223.6 158.98

Propane C3H8 0.101 2.004 1.826 1.678 1.554

devices, adsorption effects, surface tension, etc.) that re-
duce the accuracy of the density measurement when only
a single sinker is employed. In 2002, the same group de-
veloped an absolute viscometer–densimeter [3.27] for
measurements on gases, that operates with a 0.15–0.4%
uncertainty in viscosity and 0.02–0.05% in density.

Various other investigators employed densimeters.
based upon the same principle. Masui [3.28] employed
an optical sensing system fed by a fibre optic as a feed-
back control to stabilize the buoy support. Masui [3.28]
measured the density of toluene from 298 to 423 K and
pressures up to 30 MPa, with an estimated uncertainty
of 0.025%. A similar magnetic suspension densimeter
was employed by Toscani et al. [3.29] for density meas-
urements of liquids and liquid mixtures. This instrument
covered a temperature range from 295 to 400 K at pres-

sures up to 100 MPa, with an uncertainty of ±0.2%.
Okada et al. [3.30], developed a magnetic densime-
ter, in which the float consists of a hollow glass body
containing a soft-iron core.

3.1.5 Density Reference Values

The density of water is still widely employed as a liquid
density standard. The equation developed by Wagner
and Pruß [3.31] was adopted by the International Asso-
ciation for the Properties of Water and Steam (IAPWS)
in 1995. The IAPWS formulation for the thermo-
dynamic properties of ordinary water substance for
both scientific and general use is called IAPWS 1995
(IAPWS-95) [3.32]. It represents all of the thermody-
namic properties of water from the melting line (251.2 K
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at 209.9 MPa) to a temperature of 1273 K and pressures
up to 1 GPa. In this entire range IAPWS 95 represents the
most accurate measurements to within the experimen-
tal uncertainty. Values of density at specific temperature
and pressure points are given at Table 3.1.

3.1.6 Tables of Density Values

In Tables 3.2–3.6, the density of commonly encountered
fluids is given for engineering purposes, as a function of
temperature and pressure. The fluids and the temperature

and pressure conditions chosen are the same for the
density, viscosity and thermal conductivity discussed in
the present section and in Sects. 3.4 and 3.5.

Values for the liquid density are based on a large
collection of experimental data critically assessed
(n-alkanes [3.33], n-alkenes [3.34], n-alcohols [3.35],
refrigerants [3.36]). The uncertainty of the quoted li-
quid density values is much better than ±0.3%. Values
for the gas-phase density have been obtained from
corresponding-states software [3.37] with an estimated
uncertainty better than ±0.5%.

3.2 Surface Tension and Interfacial Tension of Liquids

This chapter presents the concepts of surface and inter-
facial tensions, their dependencies, measurement, and
prediction. It starts with an explanation of the surface
tension of pure liquids and its temperature dependence.
Then, the surface tension of solutions is presented, and
useful correlations for the dependence of surface ten-
sion on the solute concentration are suggested. Next, the
concept of interfacial tension associated with two dense
phases is explained, and its relationship with the surface
tensions of the two phases is discussed. The Young–
Laplace equation that correlates the pressure difference
across an interface with interfacial tension and curva-
ture is presented. Various methods for measurement
of surface and interfacial tension are discussed, based
on the theoretical background previously explained.
Finally, selected surface tension values are tabulated,
and a method for predicting surface tension from other
thermodynamic properties is shown.

3.2.1 Surface Tension of Pure Liquids

Observations Intuitive Concepts,
and Definitions

It is well known that small liquid drops are almost spher-
ical even under the influence of gravity, while large drops

Fig. 3.8
A schematic
comparison of
the forces acting
on a molecule
near a surface,
and a molecule
in the bulk

are distorted from sphericity under the effect of gravity.
Also, many types of small solid particles (and insects
such as striders) can float or move on water even if their
density is higher than that of water, while large particles
of such density readily pass through the water surface.
Clearly, therefore, there exists a force that acts on par-
ticles in general, which becomes more pronounced as
they become smaller. A complementary well-known fact
is that, as particles become smaller, the ratio of their sur-
face area to their volume increases. For example, the
surface area of a sphere of radius R is proportional to
R2, while its volume is proportional to R3; therefore, the
ratio of surface area to volume is proportional to 1/R,
which strongly increases as R decreases. Thus, it is rea-
sonable to suspect that the force acting on small particles
is associated with their interfaces.

Thinking from a molecular point of view, the net
force acting on a molecule near a surface must be differ-
ent from that acting on a molecule deep in the bulk,
simply because of symmetry considerations. This is
schematically demonstrated in Fig. 3.8. Thus, the en-
ergy of a molecule near a surface must be different from
that of the same molecule in the bulk. Based on this
general picture, Gibbs developed a formalism that de-
fines surface energy as the difference between the actual
energy of a system and the sum of the energies of its
components had there been no interface between them.
In Gibbs’ approach, the interface is considered a mathe-
matical surface of no thickness, in line with macroscopic
observations. The surface energy per unit area of a li-
quid surface in contact with vapor (or, in general, with
a gas) is its surface tension. If the liquid is in contact
with a dense phase, such as another immiscible liquid or
a solid, the corresponding terms that are used are inter-
facial energy and interfacial tension. The latter will be
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Fig. 3.9 An imaginary experiment that creates two new
surfaces by breaking an infinite liquid body into two parts,
and removing them to a large distance from each other

used below as a general term, whenever both interfacial
tension and surface tension are implied. For complete-
ness, it should be mentioned that Bakker and van der
Waals developed a different approach, in which the in-
terface is considered as a thin, but three-dimensional
region. For practical purposes, the two approaches lead
to the same conclusions.

It may also be useful to regard surface energy as the
energy needed to create a surface. In the imaginary ex-
periment shown in Fig. 3.9, an infinite body of a liquid
is separated into two parts that are removed from each
other to a sufficiently large distance, so their interac-
tion energy is negligible. The energy per unit interfacial
area needed for this separation is termed the work of co-
hesion Ec since it overcomes the cohesion between the
molecules of a single species. It is equal to twice the sur-
face tension of the liquid σl since two new surfaces were
created in this experiment. Thus,

σl = Ec

2
. (3.8)

Another imaginary experiment may shed a different light
on the surface tension concept. Figure 3.10 shows a thin
frame with three fixed sides and a movable bar as a fourth
side. If a liquid film (such as a soap film) is formed on this
frame, then a force F has to be applied to the movable bar
in order to increase the surface area of the film. The work
done by this force is Fd, where d is the path length. This
work is transformed into surface energy 2σlLd, where
L is the width of the frame (the factor 2 stands for the
two sides, top and bottom, of the liquid film). Thus

σl = F

2L
. (3.9)

This result shows that surface tension can also be inter-
preted as a force per unit length. This interpretation is

�

Fig. 3.10 Top view of a liquid film on a frame with a mov-
able side. A force acting on the movable side is required to
increase the surface area of the film

useful as a basis for some of the methods for surface
tension measurement.

Based on the above definitions, the units in which
surface tension is measured should be J/m2 or N/m.
Actually, for convenience, surface tension is usually ex-
pressed in mN/m (millinewtons per meter). The reason
for this choice is that this unit is equivalent to dynes/cm
that had been used for many years. Thus, by adopting the
units of mN/m, the numerical values of surface tension
were unchanged by the transition to SI units. Typical sur-
face tension values for regular liquids are in the range
of ≈ 14 to ≈ 73 mN/m at about room temperature. The
higher end of this range corresponds to water. Liquid
metals have much higher surface tension: mercury, for
example, has a surface tension of ≈ 486 mN/m at room
temperature.

In most practical applications, the surface tension of
a pure liquid is considered independent of the size of
the system. Thus, the surface tension of a small drop
of a liquid is assumed the same as for a large drop.
A priori, based on molecular interactions reasoning, it
can be argued that this constancy may not hold for very
small drops. This indeed is the case, however it was
experimentally demonstrated that a drop has to be almost
molecular in size in order to observe size dependence of
its surface tension.

Temperature Dependence
At the critical temperature Tc there is no distinction
between a liquid and its vapor. In other words, no inter-
face exists between them. Thus, the surface tension of
a liquid at the critical temperature must be, by defini-
tion, zero. This observation indicates that, in general, for
most liquids, surface tension decreases as the tempera-
ture is increased. Since no exact theory seems to exist,
the quantitative dependence of surface tension on the
absolute temperature T (in K) can be estimated by semi-
empirical, approximate expressions. A useful expression
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is the Eötvös equation, which reads

σlV
2/3 = c(Tc − T ) , (3.10)

where V is the molar volume in m3, c is a constant,
which for many liquids has the value of approximately
2.1 × 10−4 J/K, and σl is measured in mN/m.

Another useful expression is the van der Waals–
Guggenheim equation

σl = σ0
(

1− T

Tc

)n

, (3.11)

where σ0 is a constant typical to the liquid, in the same
units as σl, and n equals 11/9 for many organic liquids.
The usefulness of these two expressions lies in their
approximate universality in terms of the values of c or n.

3.2.2 Surface Tension of Liquid Solutions

Concepts and General Examples
In many practical processes, solutions rather than pure
liquids are employed. Therefore, understanding surface
tension of solutions is essential. In principle, solutes
may increase the surface tension or decrease it. Accord-
ing to a fundamental, thermodynamic theory developed
by Gibbs, the effect of a solute on surface tension de-
pends on the tendency of the solute to concentrate at the
solution–air interface. If the solute tends to concentrate
at the interface more than in the bulk, an increase in its
concentration will decrease the surface tension.

Figure 3.11 shows typical dependencies of surface
tension on concentration in aqueous systems. Fig-
ure 3.11a shows the effect of a typical electrolyte (NaCl)
dissolved in water. As can be clearly seen, the addition
of the electrolyte increases the surface tension beyond
that of water. However, very large concentrations are re-
quired for a relatively small increase in surface tension.
Clearly, the electrolyte prefers to be in the bulk rather
than at the surface. Figure 3.11b shows a typical effect
of a soluble organic liquid in water (propanol). The sur-
face tension gradually decreases from that of pure water
to that of the solute. The decrease is steeper at lower
concentrations of the solute and shallower at higher con-
centrations. The fact that the surface tension decreases
indicates that the organic solute prefers to concentrate at
the interface. This is understandable from a molecular
point of view, because a molecule of an organic mater-
ials always has a hydrophobic (water-fearing) part in it,
which tends to stay away from water as much as possible.

When an organic molecule has a polar part together
with a dominant hydrophobic part, the solubility in the
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Fig. 3.11a–c Typical surface tension dependence on so-
lute concentration in aqueous solutions: (a) an electrolyte
(NaCl); (b) a soluble organic liquid (propanol, the curve
represents a fit of the Connors and Wright equation);
(c) a surfactant (CTAB in PBS, the curve represents a fit
of the Szyszkowski equation)

bulk is small, and the molecule tends to adsorb mostly
at the surface. Such amphiphilic molecules are referred
to as surface-active agents or surfactants. Figure 3.11c
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shows a typical dependence of the surface tension on
concentration for a surfactant (cetyl trimethyl ammo-
nium bromide in phosphate buffer solution, CTAB in
PBS). Two features are very prominent in this figure:

1. the surfactant concentration that leads to a mean-
ingful reduction in surface tension is orders of
magnitude smaller than for a soluble organic ma-
terial; and

2. above a certain concentration the surface tension
remains constant.

The latter is called the critical micelle concentration
(CMC), since at this and higher concentrations of the
surfactant, its molecules in the bulk aggregate in struc-
tures called micelles. This aggregation is an alternative
to adsorbing at the liquid-air surface. The hydrophobic
parts of the molecules are hidden inside the micelles in
order to minimize their interaction with water, instead
of being exposed to air at the interface. A spherical mi-
celle is shown schematically in Fig. 3.12. Micelles exist
in many geometrical forms, a topic which is extensively
covered in textbooks and in the research literature, and
which is of the utmost importance in biology (cell mem-
brane formation by lipids). It is also interesting to note
that reverse micelles can form in organic liquids, where
the polar parts of the surfactant molecules will be hidden
from the solvent.

Useful Surface Tension Correlations
Unfortunately, the theory regarding surface tension of
solutions is not yet sufficiently developed to yield exact,
general equations. Therefore, semi-empirical correla-
tions need to be used. Two useful correlations are
presented below, one that is useful for very low concen-
trations, and the other for relatively high concentrations.

For low concentrations, the von Szyszkowski equa-
tion may be used

σl = σ0 − RTΓ∞ ln (1+ C

b
) , (3.12)

where σ0 is the surface tension of the pure solvent, R is
the universal gas constant, C is the molar concentration

Fig. 3.12
A schematic
of a spherical
micelle

of the solute, and Γ∞ and b are two empirical constants
to be determined by the best fit to experimental data.
In the simplified theory underlying this equation, Γ∞ is
the saturation surface concentration (mols per unit area)
of the adsorbed molecules at the surface. The curve in
Fig. 3.11c shows an example of a fit of this equation to
experimental data. The fit is excellent all the way to the
CMC.

At higher concentrations, an equation developed by
Connors and Wright [3.38] may be employed

σl = σ0 − (σ0 −σs)

(
1+ β(1− x)

1−α(1− x)

)
x , (3.13)

where σs is the surface tension of the pure solute, x is
the molar fraction of the solute, and α and β are the two
empirical constants to be determined. It is clear that at
x = 0 this equation indeed predicts the surface tension
to be that of the pure solvent, σ0, and at x = 1 that of the
pure solute, σs. Figure 3.11b shows that this equation
can fit data very well for intermediate concentrations.

3.2.3 Interfacial Tension

Work of Adhesion
The concept of interfacial tension can be demonstrated
and understood by following an imaginary experiment,
similar to that used for introducing the surface ten-
sion concept. Suppose, as shown in Fig. 3.13, that two
semi-infinite bodies of different materials, a and b, are
separated from each other to a sufficiently large dis-
tance, so their interaction energy is negligible. At the
beginning of the process, the interfacial energy per unit
interfacial area is σab, while at the end the sum of the sur-
face energies per unit area is (σa +σb). The energy per
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Fig. 3.13 An imaginary experiment that creates two new
surfaces by separating two semi-infinite bodies of different
materials at the interface between them, and removing them
to a large distance from each other
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unit interfacial area needed to achieve this separation,
Ea, is termed the work of adhesion, and the interfacial
tension can be expressed as

σab = σa +σb − Ea . (3.14)

Thus, if one can independently calculate Ea, the interfa-
cial tension can be calculated from the individual surface
tensions.

Calculation of Interfacial Tension
from Surface Tensions

Unfortunately, an exact, general calculation of the work
of adhesion is not yet possible. Therefore, some use-
ful approximations have been developed over the years.
Girifalco and Good [3.39] presented the first useful
correlation:

Ea = 2φ
√

σaσb , (3.15)

where φ is a dimensionless correction factor, cover-
ing for the uncertainty in the equation. Values of φ

for liquid–fluid systems were measured to be in the
range of 0.6–1.2, so the uncertainty in this equation
is meaningful.

Fowkes [3.40] developed another approach. In his
approach, surface tension consists of two contributions:
that of dispersion (London–van der Waals) forces and
that of other sources, such as hydrogen bonding, for
example:

σ = σd +σh . (3.16)

Here, σ is surface tension in general, the superscript d
stands for dispersion (London–van der Waals) forces,
and the superscript ‘h’ stands for hydrogen bonding. In
addition, the work of adhesion between two non-similar
phases (e.g., an aqueous phase and a nonpolar phase)
depends only on the nonpolar interactions between them.
Therefore,

Ea = 2
√

σd
a σ d

b (3.17)

Owens and Wendt [3.41] generalized this approach by
considering the surface tension to include, in general,
also a polar (nondispersive) contribution: σ = σ d +σp,
where the superscript ‘p’ stands for the polar contribu-
tions. Then, the work of adhesion becomes

Ea = 2
√

σ d
a σ d

b +2
√

σ
p
a σ

p
b . (3.18)

By comparing (3.18) with (3.15), an expression for the
Girifalco–Good correction factor can be derived

φ =
√

σ d
a σ d

b

σaσb
+

√
σ

p
a σ

p
b

σaσb
. (3.19)

This equation can be used to roughly estimate the value
of φ. For water, σ d/σ ≈ 0.3, so for the case of an in-
terface between water and a completely nonpolar liquid
(σp = 0), φ = 0.31/2 ≈ 0.55. This value agrees well with
the lowest end of the experimentally measured φ. How-
ever, the highest value of φ according to (3.19) is 1,
which is lower than the experimentally derived value
of about 1.2. Thus, while (3.19) is probably a good ap-
proximation, it is still not sufficiently accurate. Other
correlations and approaches that are based on various
contributions to surface tension can also be found in the
literature.

In order to elucidate the surface tension compo-
nents of a polar liquid (say liquid a), its interfacial
tension with a nonpolar liquid (b) should be meas-
ured. In this case, σ

p
b = 0, σ d

b = σb, and φ = √
σ d

a /σa.
Thus, calculation of φ from interfacial tension meas-
urement yields σ d

a . Obviously, it is advisable to repeat
the measurement with a few nonpolar liquids and
get an average result. For example, the nonpolar liq-
uids n-hexane, n-heptane, n-octane and n-decane all
have a φ of 0.55 with water at 20 ◦C. Consequently,
0.55 = √

σ d
w/σw = √

σ d
w/72.8, or σ d

w
∼= 22 mN/m and

σ
p
w ∼= 50.8 mN/m. Benzene has a surface tension of

28.9 mN/m and a φ of 0.72 with water at 20 ◦C. There-

fore, by (3.19), 0.72 =
√

22σ d
b

72.8·28.9 +
√

50.8(28.9−σ d
b )

72.8·28.9 , and
it turns out that σ d

b
∼= 27.5 mN/m. As expected, this

value is quite close to the surface tension itself.

3.2.4 Implications of Surface
and Interfacial Tension
on Liquid–Fluid Systems

Surface Curvature
The effect of surface and interfacial tension in liquid–
fluid systems is closely related to the curvature of their
interfaces. Therefore, the basic principles of curvature
definition are explained in the following.

For a two-dimensional sufficiently smooth curve,
the local radius of curvature is the radius of the cir-
cle drawn using three infinitesimally close points on the
curve (Fig. 3.14). Radii of curvature may be defined as
negative or positive, depending on whether the curve
is concave or convex. For a three-dimensional surface,
the mean curvature H at a given point is defined by the
following average

2H = 1

R1
+ 1

R2
; (3.20)

R1 and R2 are the principal two-dimensional radii of
curvature of the curves of intersection between the sur-
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Fig. 3.14 Examples of the local radius of curvature of a two-
dimensional curve (the two local radii of curvature shown
in the figure have opposite signs)

face and two perpendicular planes (the principal cross
sections, Fig. 3.15). It is important to realize that H is
invariant to the orientation of the two planes, as long as
they are perpendicular to each other.

For example, the mean curvature of a sphere is 1/R,
where R is the sphere radius, since in this case R1 =
R2 = R. For a cylinder, it is convenient to choose one of
the perpendicular planes to be parallel to the axis of the
cylinder (so that R1 = ∞) and the other perpendicular
to the axis (so that R2 = R, the cylinder radius). Thus,
for a cylinder H = 1/(2R).

Pressure Difference across Curved Interfaces
For large liquid–fluid systems, the interfaces of which
have zero curvature, the pressure at equilibrium must
be equal on the two sides of the interface. However,
when the interfacial curvature is nonzero, a pressure
difference across the interface must exist at equilibrium.
The magnitude of this pressure is given by the Young–

��

��

Fig. 3.15 Intersection curves of a three-dimensional surface
with two perpendicular planes

Laplace equation

Pi − P0 = 2σlf H = σlf

(
1

R1
+ 1

R2

)
, (3.21)

where Pi is the pressure at the side of the interface
for which the radius of curvature is defined, Po is the
pressure at the other side of the interface, and σlf is the
interfacial tension between the liquid and the fluid. For
simple shapes, such as a bubble or a drop, Pi and Po
can be interpreted as the inside and outside pressure,
respectively.

Thus, for example, for a spherical body

Pi − Po = 2σlf

R
. (3.22)

It is important to notice that this equation does not dif-
ferentiate between a fluid (e.g. air) bubble and a liquid
drop: the pressure is always higher inside the curved
body, whether it is a bubble or a drop. For a cylindrical
body the pressure difference is given by

Pi − Po = σlf

R
. (3.23)

3.2.5 Measurement of Surface Tension
and Interfacial Tension

Force Methods
Some surface tension measurement methods use force
measurements, as described below. These methods em-
ploy the concept of surface tension (or interfacial
tension) being a force per unit length.

Drop Weight. The idea underlying this method is that
a drop remains attached to a capillary as long as the in-
terfacial tension force balances its weight. This is shown
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Fig. 3.16a–c The drop weight method: (a) the approximate force
balance; (b) surface tension measurement; (c) interfacial tension
measurement (the fluid is a lighter surrounding liquid)
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102 Part B Measurement of Primary Quantities

schematically in Fig. 3.16a. According to this simplis-
tic argument, the interfacial tension force at detachment
equals the weight of the detached drop Wd. The force
due to interfacial tension is assumed to be 2πrσlf , where
r is the radius of the capillary (interfacial tension is
considered as force per unit length). Thus, in princi-
ple, weighing a drop and measuring the radius of the
capillary enable the calculation of the interfacial tension.

However, the detachment process is much more
complex than assumed above. Actually, the detachment
does not occur at the line of contact between the li-
quid and the capillary, but through the formation of
a narrowing neck in the drop itself. Therefore, the static
picture of a balance between gravity and the interfacial
tension force needs to be complemented. The dynamic
process of detachment is rather complicated, and can be
described only with the help of rather sophisticated nu-
merical simulations. Thus, the practical solution to the
problem is to add a correction factor, fW, to the static
balance equation:

Wd = 2πrσl fW . (3.24)

The correction factor turns out to depend on the di-
mensionless ratio between the radius of the capillary
and the cubic root of the volume V of the drop:
fW = fW(r/V 1/3). Figure 3.17 shows an approximate
curve for fW. Since the detachment process is dynamic,
(3.24) may need also to be corrected for the viscosity of
the liquid, if it is very high. Information about the ef-
fect of viscosity is still incomplete. Still less is known
on a significant effect of the elastic stresses developing
in non-Newtonian viscoelastic polymer solutions (even
in the most dilute ones).

0
0

�8� �8�
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Fig. 3.17 An approximate curve for fW, the correction
factor for the drop weight method

From a practical point of view, the drop weight
method is a convenient, inexpensive method that can
give good interfacial tension results. It may be especially
useful when relative changes in interfacial tension are
more important than very accurate, absolute values. The
drop weight is calculated as an average of a sufficiently
large number of drops. An automatic drop counter is
helpful. The radius of the capillary can be accurately
measured, however attention should be given to find out
whether the drop hangs on the outer perimeter of the
capillary or the inner one. The correction factor is best
estimated by calibration of the actual experimental sys-
tem with liquids of known surface tension. The drop
weight method can be used to measure surface tensions
(Fig. 3.16b) as well as interfacial tensions (Fig. 3.16c).
For the latter purpose, the capillary tip is dipped into the
fluid.

The Ring Method. The ring method is described
schematically in Fig. 3.18. The principle behind it is
somewhat similar to the one underlying the drop weight
method: one measures the force needed to detach a wire
ring from a liquid–fluid interface. The ring is dipped into
the liquid, and then removed until detachment from the
liquid occurs. The maximum force measured in this case
Fr is the sum of the weight of the ring Wr and the inter-
facial tension force that acts on the inner as well as outer
perimeter of the ring. Since the thickness of the wire of
the ring is very small compared with its radius, the two
perimeters are considered to be of the same radius Rr.
As in the case of the drop weight method, the detach-
ment process is complex, therefore a correction factor
fr is required in order to calculate the exact interfacial
tension from the simplistic force balance. Thus

Fr = Wr +4 frπ Rrσlf . (3.25)

fr depends on two dimensionless ratios: fr =
fr(Rr/V 1/3

r , Rr/rr), where Vr is the meniscus volume

��

Fig. 3.18
A schematic of
the ring method
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(liquid carried by the ring above the bulk level), and rr
is the cross-sectional radius of the wire.

One of the main advantages of this method is that it
can be easily automated and calibrated to give a surface
tension reading. The fr dependence is then an integral
part of the instrument software. The main disadvan-
tage of this method is its sensitivity to the cleanliness
of the wire (usually a platinum wire). Also, the wire
has to be perfectly planar in order to avoid distortions
of the interface that may interfere with the measure-
ment and calculations. The ring method may be used
for measuring interfacial tensions as well as surface
tensions.

Wilhelmy Plate. The Wilhelmy plate method is simi-
lar to the ring method, however a thin, vertical plate is
used instead of a ring (Fig. 3.19). The main advantage
is that the force balance at detachment does not need
a correction factor, because of the simplicity of the plate
geometry and its thinness:

Fp = Wp + ppσlf . (3.26)

In this equation, Fp is the force measured by the balance,
Wp is the weight of the plate, and p is the perimeter of
its cross section. The Wilhelmy plate method is use-
ful for measuring interfacial tensions as well as surface
tensions.

Shape Methods
The shape methods for surface tension measurement
take advantage of the fact that the shape of a drop at
equilibrium is determined by a balance between ex-
ternal forces (e.g., gravity) and surface or interfacial
tension. A drop used in these methods may be hanging
from a capillary (pendant drop) or on top of a horizon-
tal solid surface (sessile drop). When external forces are
negligible, the drop must be spherical, independently of
interfacial tension. However, when external forces are
sufficiently large to distort the shape of the drop from

�/

Fig. 3.19 The
Wilhelmy plate
method

�
�
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Fig. 3.20 A pen-
dant drop with
the variables
used in the cal-
culation of its
shape

sphericity, the details of its shape depend also on interfa-
cial tension. Recording the shape enables the calculation
of interfacial tension from (3.21).

Drop Shape. In this method, the shape of a drop is
recorded, digitally analyzed, and compared with theo-
retical calculations. The drop must be sufficiently large,
so that the effect of gravity on its shape is meaningful.
The drop must also be axisymmetric, in order to enable
comparison with available theoretical calculations. The
objective of the comparison with theory is to find the in-
terfacial tension value that leads to the best fit between
the recorded and calculated shapes.

For these calculations, (3.21) is transformed in the
following way for the case of a pendant drop (Fig. 3.20).
Very similar arguments apply to sessile drops. First, the
pressure difference at each point across the interface is
expressed as

Pi − Po = (Pi − Po)z=0 −∆ρgz , (3.27)

where x andz are the coordinates for describing the drop
shape (Fig. 3.20), the point (x = 0, z = 0) is the drop
apex, (Pi − Po)z=0 is the pressure difference at the drop
apex, ∆ρ is the density difference between the liquid
and the fluid, and g is the gravitational acceleration.

Then, for an axisymmetric drop, the expressions for
the radii of curvature become

1

R1
= (d sin α)

dx
, (3.28)

where R1 is the principal radius of curvature in a drop
cross section that includes the z-axis and

1

R2
= (sin α)

x
, (3.29)

where R2 is the principal radius of curvature in a plane
perpendicular to the above cross section, at the point (x,
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z). α is the angle between the drop axis and the normal
to the drop interface (Fig. 3.20). When (3.27–3.29) are
introduced in (3.21), the result is a first-order differential
equation in α

d sin α

dx
= (Pi − Po)z=0

σlf
− ∆ρgz

σlf
− sin α

x
. (3.30)

Due to the symmetry at the apex, R1 = R2. Therefore

(Pi − Po)z=0

σlf
= 2

b
, (3.31)

where b is the radius of curvature at the apex. Thus,
(3.30) finally reads

d sin α

dx
= 2

b
− ∆ρgz

σlf
− sin α

x
. (3.32)

However, there are still two independent variables, x and
z. To solve this problem, the integration is done along
the generatrix of the drop interface, introducing the arc
length from the apex, s, as variable. The variables x and
z are related to s by (Fig. 3.20)

dx = cos αds (3.33)

and

dz = sin αds . (3.34)

The arc length should also be introduced as a vari-
able in (3.32), where d sin α/dx is replaced by dα/ds.
Then, (3.32–3.34) constitute a set of three differential
equations that are solved by routine numerical integra-
tion methods. The drop shape method has also been
automated.

Rotating Cylinder. In this method, the shape of a drop
is determined by a balance between interfacial tension
and centrifugal force. A bubble of a fluid is introduced
into a horizontal capillary that is filled with a liquid (the
density of the liquid is higher than that of the fluid). The
capillary rotates around its axis (Fig. 3.21). The centrifu-
gal force increases pressure in the denser liquid, which
squeezes the fluid bubble. In the absence of interfacial
tension, the fluid bubble would have become a very thin
and long cylinder. However, interfacial tension tends to

�� �

Fig. 3.21 The rotating-cylinder method

keep the bubble as spherical as possible. The equilibrium
between these two forces determines the actual shape of
the bubble.

If, for simplicity, one assumes the bubble to resemble
a cylinder of radius rb (and finite length), then minimiza-
tion of the system energy (the sum of the kinetic and
interfacial energies) leads to the following approximate
equation

σlf ∼=
(
ω2∆ρr3

b

)
4

, (3.35)

where ω is the angular velocity of rotation. This equa-
tion can be employed to estimate the usefulness of the
method. In one assumes an angular velocity of 102 s−1,
density difference of 0.2 × 103 kg/m3, a bubble radius
of 10−3 m, the resulting interfacial tension is 0.5 mN/m.
Thus, this method may be used for the measurement of
very low interfacial tensions.

In order to be able to measure the bubble radius while
the capillary is rotating, a stroboscopic light is synchro-
nized with the frequency of rotation. Thus, the bubble
appears frozen. The main technical difficulty is indeed
stabilizing the rotating capillary in such a way that the
frozen bubble is amenable to exact measurement of its
size. This stabilization is more difficult the higher the
frequency of rotation. Therefore, this method is espe-
cially useful for low interfacial tensions, for which the
rotation frequency does not need to be very high.

Maximum Bubble Pressure
This method is based on a clever way of using (3.21)
without the need to measure the radius of curvature of
the interface directly. The idea underlying the method
is related to the pressure variations inside a bubble that
is growing at the tip of a capillary. At the beginning of
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Fig. 3.22a,b The maximum bubble pressure method:
Stages in the growing of a bubble
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Table 3.7 Selected surface tension values of organic liquids

Group Material Surface tension

at 20 ◦C [mN/m]

Acetylenes 1-hexyene 20.98

1-tridecyne 27.56

Acids Formic 37.67

(organic) Isobutyric 25.04

Aldehydes Acetaldehyde 21.18

2-furaldehyde 43.76

Alcohols Ethyl 22.39

1-decanol 28.88

Alkyl halides Chloromethane 16.2

1-iodohexadecane 32.73

Amines Trimethylamine 13.97

Phenylhydrazine 45.56

Benzene Benzene 28.88

and its alkyl 1-phenyldecane 30.97

derivatives

Esters, Ethyl α-campholanate 27.64

aromatic Benzyl benzoate 45.95

Esters, Isopropyl acetate 22.30

carboxylic Methyl acetoacetate 33.09

Ethers Ethyl methyl ether 15.93∗

Anisole 35.70∗

Ketones Acetone 26.67

Benzophenone 44.05

Olefins 1-pnetene 16.00

1-octadecene 28.49

Organosilicon Tetramethylsilane 12.85

compounds Tetrapropyl silicate 23.58

Paraffins Pentane 16.05

Eicosane 28.87

Perfluoro Perfluoropentane 9.89

compounds Perfluorocyclopentane 11.12

∗ value interpolated between 15 ◦C and 25 ◦C

the process of blowing a bubble, the bubble volume is
small, the radius of curvature is large (Fig. 3.22a, stage a,
dashed curve), and the pressure is, consequently, low. As
the blowing process proceeds and the bubble grows, the
radius of curvature decreases (Fig. 3.22a stage b, dashed
curve), and the pressure increases. From a geometric
point of view, the lowest possible radius of curvature of
the bubble (when it is sufficiently small to be spherical)
is the inside radius of the capillary (Fig. 3.22a stage c,
solid curve). At this point, the pressure is highest. From
this point on, an increase in the bubble volume must be

Table 3.8 Selected surface tension values of inorganic liq-
uids

Liquid Surface tension at 20 ◦C [mN/m]

Bromine 41.8

Carbon disulfide 32.32

Hydrogen peroxide 75.87

Mercury 486.5

Water 72.88

associated with an increase in the radius of curvature
(Fig. 3.22a stage d, dashed curve), therefore with a de-
crease in pressure. Thus, when the pressure is highest
(for sufficiently small bubbles), the radius of curvature
of the bubble must equal that of the capillary. By iden-
tifying the point of maximum pressure, surface tension
can be calculated from the measured maximal pressure
difference ∆Pmax and the known capillary radius rc

σl = ∆Pmaxrc

2
. (3.36)

If the bubble is sufficiently large to be distorted by grav-
ity, a corresponding correction must be made to (3.36),
based on calculations of the exact shape of the bubble.

From a practical point of view, the system in-
volves blowing gas bubbles into a sample liquid, and
continuously measuring the pressure inside the bubble
(Fig. 3.22b). This method is more suited to measure
surface tension than interfacial tension. The bubbles
are continuously blown, and the maximum pressure is
recorded over many bubbles. It is important to blow
the bubbles as slowly as practically possible, in order
to 1. obtain equilibrium values of surface tension, and
2. avoid interactions between successive bubbles, which
may interfere with the measurement. The method was
neglected for a long time, since accurate pressure trans-
ducers were too expensive. Since their price has turned
reasonable, this method has become a useful option.

3.2.6 Surface Tension Values for Liquids

Typical, Selected Values
Tables 3.7 and 3.8 present typical, selected sur-
face tension values, taken from the review paper by
Jasper [3.42]. Effort has been made to include the
highest and lowest values of each group, in order to
demonstrate the possible value range.

Data on the dependencies of surface tension on tem-
perature for numerous liquids can be found in the book
by Vargaftik et al. [3.43].
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Estimation of Surface Tension
There are a few methods for predicting the surface ten-
sion of a liquid from its properties. One of the successful
methods for liquids that do not contain hydrogen bonds
is the corresponding-state method:

σl = P2/3
c T 2/3

c Q

(
1− T

Tc

)11/9

. (3.37)

In this equation, σl is given in mN/m, Tc and Pc are the
critical temperature and pressure of the liquid in K and
Pa, respectively, and T is the temperature.

Q = 5.553 × 10−5

[
1+

Tb
Tc

ln (Pc/1.013 × 105)

1− Tb/Tc

]

−1.293 × 10−4 . (3.38)

In this equation, Tb is the normal boiling point (i. e., the
boiling point at 1.013 × 105 Pa). Q has the dimension-
ality of [kg1/2m/(s K)]2/3, however its numerical value
is adjusted to yield the surface tension in mN/m. Equa-
tion (3.37) and (3.38) may predict surface tension to
within a few percent.

3.3 Contact Angle

3.3.1 The Equilibrium Contact Angle

This section presents the various definitions of
equilibrium contact angles, their measurement and in-
terpretation. It starts with the contact angle on an ideal
solid surface, its calculation, and the assessment of the
solid surface tension from the value of the ideal con-
tact angle. Then, the complexity of contact angles on
real surfaces, which are rough and chemically hetero-
geneous, is explained. The phenomenon of hysteresis
and the concepts of the advancing, receding, and most
stable contact angles are presented and discussed. The
conditions for meaningful measurement of contact an-
gles are explained, and methods for their interpretation
are presented.

The Ideal Contact Angle
The Young Equation. Figure 3.23 shows a typical wet-
ting system consisting of a drop on a solid surface.
This system contains three interfaces, therefore is char-
acterized by three interfacial tensions: liquid–fluid σlf ,
solid–liquid σsl, and solid–fluid σsf (out of these, only
σlf is directly measurable). The contact angle θ is de-
fined as the angle between the tangent to the liquid-fluid
interface and the tangent to the solid interface at the con-
tact line between the three phases. By convention, the
contact angle is measured on the liquid side (rather than
on the fluid side). In many practical situations, the fluid
is a gas.

The relationship between the contact angle and the
interfacial tensions in the system is based on the pio-

neering publication by Young in 1805:

cos θY = σsf −σsl

σlf
. (3.39)

In this equation, the subscript Y indicates the contact an-
gle predicted by the Young equation. This equation was
developed for the case of an ideal solid surface, which is
defined as smooth, rigid, chemically homogeneous, in-
soluble and non-reactive. Therefore, this contact angle
is referred to as the ideal contact angle. It is important
to emphasize that this relationship depends only on the
chemical nature of the three phases, and is independent
of gravity. The latter may affect the shape of the drop,
but not in the close proximity of the contact line, thus
not its contact angle. The Young contact angle repre-
sents the state of the drop, which has the minimal Gibbs
energy. It is important to note that the Gibbs energy ver-
sus contact angle curve for an ideal surface has only
a single minimum at θY. In other words, an ideal solid
surface is characterized by a single value of the contact
angle.

In principle, the three interfacial tensions may be
influenced by each other at the contact line. This is
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Fig. 3.23 A typical wetting system
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due to the effect that one phase may have on the in-
teraction between the other two phases. For example,
the molecules of the solid may interfere with the inter-
action between the liquid and the fluid, thus affecting
the value of the liquid-fluid interfacial tension very
close to the contact line. This possibility was recog-
nized by Gibbs, who suggested that this three-phase
mutual interaction be accounted for by a line tension.
The value of line tension has been a controversial is-
sue for many years, however it is clear now that it may
affect the contact angle of drops only when they are
very small (much less than 1 micron). Therefore, line
tension will not be referred to any more in the present
discussion.

In order to predict the equilibrium contact angle,
using (3.39), one needs to know all three interfacial ten-
sions. However, σsl and σsf cannot be directly measured.
Thus, the best that can be done to reduce the number of
unknowns is to use the correlations between interfacial
tensions and surface tensions that were introduced in
Sect. 3.2. Since in most applications and, especially, in
most measurements the fluid is a gas, σf is practically
zero. Therefore, the solid–fluid interfacial tension σsf is
actually the surface tension of a solid, σs. For simplic-
ity and clarity of presentation, it is assumed throughout
this chapter that the fluid is a gas.

Under this assumption, introducing, for example,
(3.14) and (3.15) from Sect. 3.2 into (3.39), leads to

cos θY = −1+2φ

√
σs

σl
. (3.40)

It should be remembered, however, that σs, the surface
tension of the clean solid, is also not directly measurable.
Therefore, an equation such as (3.40) can be used in
either of two ways (assuming that the value of φ is
known):

1. to calculate the θY, using σs as a free parameter;
2. to assess σs based on measurements of θY.

A few numerical examples that illustrate the pre-
dictions of θY by this equation are summarized in
Table 3.9, assuming, for simplicity, that φ = 1. The is-
sue of the value of φ will be discussed later in more
detail.

Example 1 represents the case of a water drop on
a typical nonpolar plastic surface. The contact angle
is relatively high, in agreement with typical data for
water on polyethylene, for example. Example 2 repre-
sents a nonpolar liquid, such as octane, on a nonpolar
plastic such as polyethylene. This case is character-

Table 3.9 Numerical predictions of (3.40) for various cases
(assuming φ = 1)

Example σl [mN/m] σs [mN/m] cos θY θY [◦]

1 73 22 0.098 84.4

2 22 22 1 0

3 73 400 3.68 0

ized by a zero contact angle, and is usually termed
complete wetting. Equation (3.40) shows that com-
plete wetting always results when the surface tension
of the liquid is approximately equal to that of the
solid (depending on the exact value of φ). Equa-
tion (3.40) shows that the contact angle is higher than
zero when the surface tension of the liquid is approx-
imately higher than that of the solid, as demonstrated
in the previous example 1. This case is termed partial
wetting.

Example 3 demonstrates the case of a liquid spread-
ing on a solid, whose surface tension is much higher
than that of the liquid. For example, water spreading on
a very clean metal surface. The interesting point is that
the value of cos θY calculated from (3.40) appears to
be higher than 1. This mathematical impossibility has
a very simple physical explanation, as follows. Equa-
tion (3.39) or its derivatives (3.40) predict where the
local minimum in energy should be, within the physi-
cally possible range of contact angles, which is 0−180◦.
However, whenever the value of cos θY is supposed by
this equation to be higher than 1, it means that such
a local minimum does not exist. Rather, the minimal
energy occurs at the border of the contact angle range,
θY = 0◦. Similarly, if cos θY appears to be lower than
(−1), the minimum in energy occurs at the other border,
at θY = 180◦.

It should also be noted that a clean solid surface,
when exposed to air, may adsorb components from the
air, so its effective surface tension may be lower than
that of the clean solid. In some cases, the solid may
adsorb the vapor of the liquid to such an extent that
its surface tension is much lowered. Systems for which
complete wetting is expected to occur (based on the
surface tension of the clean solid), but actually are char-
acterized by partial wetting (because of the adsorption
of vapor), were termed autophobic by Zisman and his
collaborators.

Assessing the Surface Tension of a Solid from the Ideal
Contact Angle. Equation (3.40), or a similar equation,
would have enabled the calculation of the surface tension
of a solid, had the value of φ been known. However, φ
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Fig. 3.24 The actual and the apparent contact angle on
a rough surface

itself depends on the surface tension of the solid and
on that of the liquid, as demonstrated, for example, by
(3.19) in Sect. 3.2. When this equation is introduced into
(3.40), one gets

(1+ cos θY)σl = 2

(√
σ d

s σ d
l +

√
σ d

s σ d
l

)
. (3.41)

Assuming that the surface tension of the liquid and its
components are known, this equation involves two un-
knowns: σ d

s and σ
p
s . In order to solve for both unknowns,

another contact angle measurement needs to be made
with a different liquid on the same solid. Then, a sys-
tem of two equations enables the calculation of the two
unknowns:

(1+ cos θY1)σl1 = 2

(√
σ d

s σ d
l1 +

√
σ d

s σ d
l1

)
. (3.42)

(1+ cos θY2)σl2 = 2

(√
σ d

s σ d
l2 +

√
σ d

s σ d
l2

)
. (3.43)

In order to get meaningful results, it is very important
to correctly choose the liquids for the contact angle
measurements. It turns out that it is best if one of the
liquids is nonpolar, and if the liquids are as dissimilar as
possible.

Contact Angles on Real Surfaces
Actual and Apparent Contact Angles. The previous
section outlined the procedures for calculating either
the contact angle on an ideal solid, or the surface ten-

Fig. 3.25a,b Contact angle hysteresis: (a) increasing the drop vol-
ume increases the apparent contact angle up to the advancing contact
angle; (b) decreasing the drop volume decreases the apparent contact
angle down to the receding contact angle

sion of a solid from the measured ideal contact angle.
However, in reality, solid surfaces are seldom ideal; they
are usually rough and chemically heterogeneous to some
extent. In these cases, there is a need to distinguish be-
tween actual and apparent contact angles. Figure 3.24
demonstrates these definitions for a rough surface. The
actual contact angle is the angle between the tangent to
the liquid-fluid interface and the actual, local surface of
the solid. The apparent contact angle is the angle be-
tween the tangent to the liquid-fluid interface and the
line that represents the nominal solid surface, as seen
macroscopically.

Figure 3.24 clearly demonstrates that the difference
between the two angles may be very large. It turns out,
that the actual contact angle equals the Young contact
angle, if line tension is negligible. So, the actual contact
angle is the one needed for the assessment of surface
tension of solid surfaces, or as a boundary condition for
theoretical calculations. However, a method to routinely
measure the actual contact angle has not been devel-
oped yet. The contact angle that is currently amenable
to measurement is the apparent one. Therefore, the main
problem that needs to be solved is the correlation be-
tween the measurable, apparent contact angle and the
ideal one.

Contact Angle Hysteresis. When apparent contact an-
gles are measured on real surfaces, which may be rough
or chemically heterogeneous or both, it becomes clear
that there exists a range of practically stable, apparent
contact angles. This is in contrast to the prediction by
the Young equation of a single contact angle on an ideal
surface. Experimentally, when the drop volume is in-
creased, the contact line appears to be pinned, while the
contact angle increases (Fig. 3.25a). The apparent con-
tact angle eventually reaches a maximum value, which is
termed the advancing contact angle. If the drop volume
is further increased, the contact line advances. Therefore,
the motion of the contact line is sometimes described as
a stick-slip motion. Similar phenomena occur when the
drop volume is decreased (Fig. 3.25b): the contact line
appears to be pinned, while the contact angle decreases
until it reaches a minimal value called the receding con-
tact angle; further reduction in the drop volume causes
the contact line to recede. The difference between the
advancing and receding contact angles, which is termed
the hysteresis range, may be very large. Thus, contact
angle hysteresis is a major problem in the interpreta-
tion of contact angles and the assessment of the surface
tension of a solid.
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Fig. 3.26 A schematic of the Gibbs energy curve for a real
surface with the following features: the global minimum,
the theoretical advancing contact angle (TACA), a practical
advancing contact angle (PACA), the theoretical receding
contact angle (TRCA), a practical receding contact angle
(PRCA), a potential barrier

In contrast to the Gibbs energy curve for a drop
on an ideal solid surface, the energy curve for a real
surface is characterized by multiple minima points, as
demonstrated schematically in Fig. 3.26. Thus, many
metastable apparent contact angles exist. In principle,
the system tends to get to the most stable state, which
is defined by the global minimum (Fig. 3.26). However,
in-between the local minima in the Gibbs energy, lo-
cal maxima exist. Therefore, in order to move from
one local minimum to the next, the drop has to over-
come an energy barrier (defined as the energy difference
between a local minimum and an adjacent local maxi-
mum, Fig. 3.26). It is important to note that the energy
barrier increases as the drop gets nearer to the global
minimum.

Based on this theoretical picture, it is clear that
the theoretical advancing contact angle is the high-
est angle for which there is a local energy minimum
(Fig. 3.26). Similarly, the theoretical receding contact
angle is the lowest angle for which there exists a lo-
cal energy minimum. In practice, the system is always
subject to some energy input from the environment, for
example, via vibrations caused by the drop impact, or
by the environment of the system. This energy input
may enable overcoming energy barriers up to a cer-
tain level. Therefore, the advancing contact angle in
practice is somewhat lower than the theoretical advanc-
ing contact angle (Fig. 3.26). Likewise, the practical
receding contact angle is higher than the theoretical
one.
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Fig. 3.27 The Wenzel versus Young contact angles for var-
ious roughness ratios. The dashed line corresponds to an
ideal smooth surface with r = 1

The advancing and receding contact angles are mea-
surable quantities. To some extent, they depend on the
drop volume, so they should be measured for sufficiently
large drops. An experimental indication for the drop be-
ing sufficiently large is minimal stick-slip behavior of
the contact line. In other words, as the drop volume
is increased or decreased, the drop retains the contact
angle at its advancing or receding value, respectively,
without featuring stick-slip. However, the correlation
between the advancing, receding and the Young con-
tact angle is not known yet. In some cases, especially
when only a comparative study is required, the advanc-
ing contact angle serves as a convenient, reproducible
measure. More information can be obtained from the
most stable contact angle (at the global minimum in the
Gibbs energy), as described in the following.

The Most Stable Apparent Contact Angle on Rough
Surfaces. When a drop spreads on a rough surface, the
actual solid–liquid interfacial area is higher than the
nominal (projected) interfacial area. This has to be ac-
counted for when the minimum in the Gibbs energy of
the system is sought after. The surface roughness is char-
acterized for this purpose by the roughness ratio r which
is the ratio between the actual and nominal surface area
of the solid. Thus, for a smooth surface r = 1, and for
a rough surface r > 1. In 1936, Wenzel developed the
following equation for the apparent contact angle θW on
a rough surface

cos θW = r cos θY . (3.44)
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This equation has an interesting practical prediction.
If θY < 90◦ (good wettability of a smooth surface
of the same chemistry), roughness enhances wetting,
i. e. θW < θY. If, however, θY > 90◦, roughness dimin-
ishes wetting, namely θW > θY. This is demonstrated in
Fig. 3.27 for a few values of r.

It is important to recognize that the Wenzel equation
is based on the assumption that the liquid completely
penetrates into the roughness grooves (Fig. 3.28a). This
wetting situation on rough surfaces is termed homo-
geneous wetting. Under some roughness conditions,
especially when roughness is high, this may not be
the case: air bubbles may be trapped in the roughness
grooves, underneath the liquid (Fig. 3.28b). The latter
situation is referred to as heterogeneous wetting on rough
surfaces, and will be described in detail below.

It turns out, that the Wenzel equation is an approxi-
mation, which becomes better as the drop becomes larger
in comparison with the scale of roughness. The question
of how large the drop should be in order for the Wen-
zel equation to apply has not yet been fully answered.
However, based on some simulations and preliminary
experimental data, it seems that if the drop is larger than
the roughness scale by two to three orders of magnitude,
the Wenzel equation applies. This is reasonable from an
experimental point of view, since typical roughness is of
the order of magnitude of microns, while typical drops
are of the order of magnitude of millimeters.

The Wenzel contact angle represents the most sta-
ble contact angle on a rough surface, namely the contact
angle that is associated with the global minimum in the
Gibbs energy of the system. The methods for measur-
ing the Wenzel contact angle will be described below.
Once its value is known, the Young contact angle can
be calculated using (3.44), assuming that the roughness
ratio is also known. From the Young contact angle, the
surface tension of the solid can be calculated as de-
scribed above for an ideal solid surface. For example,

�� ��

Fig. 3.28a,b Wetting on a rough surface: (a) homogeneous
wetting – the liquid penetrates into the roughness grooves;
(b) heterogeneous wetting – air bubbles are trapped in the
roughness grooves, underneath the liquid

the measurements and calculations can be repeated for
two different liquids, then the surface tension of the solid
can be calculated from (3.42) and (3.43).

The Most Stable Apparent Contact Angle on Chem-
ically Heterogeneous Surfaces. On a chemically
heterogeneous solid surface, the surface tension varies
from one spot to the other. Accordingly, the Young
contact angle has a different, local value at each spot.
Therefore, the characterization of chemically hetero-
geneous surfaces is more complex than that of rough
surfaces. In general, the surface can be characterized by
a properly averaged apparent contact angle.

The most stable apparent contact angle on a chem-
ically heterogeneous surface θC is given by the Cassie
equation, which was published in 1948 for the case of
a surface with only two different chemistries

cos θC = x1 cos θY1 + (1− x1) cos θY2 . (3.45)

In this equation, x is the area fraction characterized by
a given chemistry, and the subscripts 1 and 2 indicate the
two different surface chemistries. This equation can be
generalized to state that the cosine of the Cassie contact
angle is the weighted average of the cosines of all the
Young contact angles that characterize the surface. The
weighted averaging is done according to the area fraction
of each chemistry.

Like in the case of the Wenzel equation, the Cassie
equation is also an approximation that becomes better
when the drop size becomes larger with respect to the
scale of chemical heterogeneity. According to prelimi-
nary simulations, a size ratio of two to three orders of
magnitude seems to be sufficient.

The Most Stable Apparent Contact Angle in Hetero-
geneous Wetting on Rough Surfaces. As mentioned
above, under some roughness conditions, air bubbles
may be trapped in the roughness grooves, under the li-
quid (Fig. 3.28b). In this case, the solid surface may be
considered chemically heterogeneous, and the Cassie
equation (3.45) may be applied:

cos θCB = frf cos θY − (1− f ) . (3.46)

This equation was developed by Cassie and Baxter (CB),
considering air to be the second chemistry in (3.45). In
(3.46), θCB is the CB apparent contact angle, f is the
fraction of the projected area of the solid surface that
is wet by the liquid, and rf is the roughness ratio of
the wet area. The fraction f in this equation plays the
role of x1 in (3.45), and the contact angle of the liquid
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with air is considered to be 180◦, since the shape of
a sufficiently small drop in air is very close to spherical.
When f = 1, rf = r, and the CB equation turns into the
Wenzel equation.

The transition from homogeneous wetting (Wenzel
equation) to heterogeneous wetting (CB equation) was
theoretically analyzed by Marmur [3.44]. It was found
to be dependent not only on the roughness ratio, but
also on the specific geometry, in terms of the second
derivative of (rf f ) with respect to f . It was also found
that heterogeneous wetting on rough surfaces may lead
to super-hydrophobicity, which is defined as a state of
a very high contact angle (� 160◦) and very low roll-off
(slip) angle. The latter is the inclination angle at which
a drop slips from or rolls-off a solid surface. It turns
out that the wetted area, i. e. the solid-liquid contact
area, is much smaller in heterogeneous than in homo-
geneous wetting, even when the apparent contact angles
are the same. Thus, it may be assumed that the force
that holds the liquid to the solid is much smaller in
heterogeneous wetting, thus leading to smaller roll-off
angles.

Contact Angle Measurement and Interpretation. The
most common method of measuring contact angles is by
taking a side-view picture of a drop and evaluating the
contact angle from this picture. The evaluation can be
made either by direct measurement of the angle (prefer-
ably averaging the angles at the two sides of the drop),
or by fitting a curve to the drop profile and calculat-
ing the angle from this curve. The fitting of the curve
may be done either by using a polynomial or by using
the solution to the Young–Laplace equation [as given by
(3.32–3.34) of Sect. 3.2]. For many practical cases, the
drop is sufficiently large for gravity to distort its shape
from being spherical. Thus, fitting the shape by a circular
segment is usually not satisfactory.

This method is simple, straightforward, and amen-
able to automation. However, the main disadvantage of
this method is the lack of testing for the symmetry of
the drop. If the drop is not axially symmetric, the meas-
urement of the contact angle is questionable. Therefore,
it is essential also to take a top view of the drop. If
this picture of the drop assures axisymmetry, then the
calculations based on the side-view are meaningful. Al-
ternatively, it is possible to take only a top-view of the
drop, and use the maximum drop diameter, drop volume,
and the surface tension of the liquid to calculate the con-
tact angle from the Young–Laplace solution for the drop
shape. The drop volume is obtained via its weight and
density.

In terms of interpretation, two approaches may be
taken:

1. the hysteresis approach, and
2. the most stable apparent contact angle (MSACA)

approach.

In the hysteresis approach, one measures the advanc-
ing and receding contact angles, θa and θr, and tries to
estimate from them either the most stable contact an-
gle θms or the Young contact angle. The measurement
of the advancing contact angle is done by increasing
the drop volume until the highest possible contact an-
gle is reached. Similarly, the receding contact angle is
measured by decreasing the drop volume until the low-
est possible contact angle is reached. Three methods of
interpretation have been suggested within this approach.
Decker et al. [3.45] suggested taking an average of the
contact angles themselves:

θms = (θa + θr)

2
. (3.47)

Andrieu et al. [3.46] proposed an average of the cosines

cos θms = (cos θa + cos θr)

2
. (3.48)

The third method is applicable only to rough surfaces,
and aims at elucidating the Young contact angle. Ka-
musewitz et al. [3.47] suggested the following steps:

1. measuring the advancing and receding contact an-
gles for a series of surfaces of the same chemistry
but varying degrees of roughness;

2. drawing the advancing and receding contact angles
versus the hysteresis range (θa − θr);

3. fitting the best straight lines for the two sets of data
in step 2; and

4. getting the Young contact angle from the extrap-
olated values of these two lines to zero hysteresis
range.

In the MSACA approach, one tries to directly meas-
ure the most stable contact angle. The basic underlying
idea is that by properly vibrating the surface, the drop
may overcome the energy barriers and get to its most sta-
ble state. The practical problem is how to identify this
most stable state. It was theoretically proven that a suffi-
ciently large drop must be axisymmetric on a horizontal,
real surface. The opposite statement has not been proven,
but a working hypothesis based on it may be applied:
a drop becomes more axisymmetric as it is vibrated and
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approaches the most stable state. Thus, the measurement
procedure involves vibrating the surface while monitor-
ing the symmetry of the drop by viewing it from above;
once the drop becomes symmetric, its contact angle is
measured as described above.

Unfortunately, none of the above approaches has
been sufficiently studied and substantiated. Also, no
standard surfaces for comparing and calibrating contact
angle measurements seem to exist. However, careful per-
formance of contact angle measurement according to the
above description and explanation may yield useful in-
formation. In particular, it should be emphasized that the
following two principles should be applied in all cases
and methods:

1. the drop should be sufficiently large, at least two or-
ders of magnitude larger than the scale of roughness
or chemical heterogeneity; and

2. the drop should be axisymmetric at the time of
measurement.

3.3.2 Dynamic Contact Angle

Here, the concept of the dynamic contact angle, its
origin and significance are introduced and current theo-
retical interpretations are briefly surveyed. The general
experimental techniques used in its measurement are
then discussed in detail with particular reference to the
method by which a liquid drop is applied to a flat solid
surface and allowed to spread. Other methods are also
outlined to illustrate some of the experimental problems
and their solution.

Introduction
Significance of the Dynamic Contact Angle. Many
industrial and material processing operations require a li-
quid to be spread onto a solid. Examples include coating,
painting, printing, plant protection, gluing and lubrica-
tion. The liquid may be paint, ink, insecticide, adhesive
or some other liquid, and may be Newtonian or rheolog-
ically complex. Similarly, the solid may have a surface
that is smooth or rough, uniform or chemically hetero-
geneous. It may be shaped as a sheet or a fibre or have
some more complicated shape, and it may be porous.
Evidently the properties of the materials involved can
vary widely.

Apart from the fundamental problem of whether
a given solid is wetted by the liquid in question, which
is discussed in Sect. 3.3.1, many of the practical appli-
cations require a precise knowledge of how the rate of
wetting affects the process. In particular, it is often help-

ful to know just how fast a liquid will wet or can be made
to wet a given area of the solid surface. Such information
is useful in process optimisation. The underlying phe-
nomena are also relevant to our understanding of many
other processes such as oil recovery from porous rocks
and ground-water flow.

The dynamic behaviour of a liquid front moving
across a solid has been studied extensively over the
past several decades. A variety of different configura-
tions have been examined, but most studies have been
restricted to one or more of the following:

• drops spreading on a flat substrate – relevant to inkjet
printing, the spraying of liquids such as paint or
insecticide, etc.;• drops moving down an inclined plane – relevant to
droplet runoff;• liquid penetration into capillary tubes or between
parallel plates – relevant to flow in porous media;• solid substrates, such as plates, cylinders, flexible
tapes or fibres being drawn into or out of liquids –
useful for fundamental coating studies;• more complex configurations such as those involved
in industrial coating processes, e.g., curtain and
roller coating.

In simple cases, the main parameters required to quan-
tify the dynamics of wetting are the relative velocity at
which the liquid moves across the solid, i. e., the contact-
line velocity v, and the dynamic contact angle θD, i. e.,
the angle formed between the moving liquid interface
and the solid surface. The dynamic contact angle is the
key boundary condition for the wetting process. Sig-
nificantly, the experimentally observed dynamic angle
generally differs from the static contact angle θS and
may refer to either an advancing (wetting) or a reced-
ing (dewetting) interface. Since solid surfaces are often
rough or chemically heterogeneous, even equilibrium
contact angles may not be single-valued, but will de-
pend on whether the interface has been advanced or
recessed a phenomenon known as contact angle hys-
teresis (Sect. 3.3.1). On such surfaces, contact lines tend
to pin, and when they do eventually move they do so in
an unsteady way. Such factors complicate both the meas-
urement and the interpretation of the contact angle. This
is especially true on surfaces that swell or reorganise in
some way on contact with the liquid.

Origin of the Dynamic Contact Angle. In forced wetting
or forced dewetting, the contact line is made to move by
application of an external force. In such cases, a sin-
gle functional relationship is expected between θD and
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v for any given system under a given set of conditions.
On changing the system or the experimental conditions
(e.g., the flow rate in a coating experiment) the precise
form of this relationship may change. Recent studies
seem to suggest that the form of the relationship depends
on the flow field in a fairly complex way [3.48, 49], so
that θD may not be a material property of the system at
any level. Nevertheless, it is generally observed that ad-
vancing angles increase while receding angles decrease
with increasing rates of steady contact-line displace-
ment. In other words the contact angle depends on both
speed and direction of displacement, i. e., it is veloc-
ity dependent. This is shown schematically in Fig. 3.29
for a system that also exhibits contact angle hystere-
sis. While anomalies have been observed [3.50], the
relationship between θD and v is usually monotonic.

On the other hand, if we deposit a drop of liquid onto
a solid it will tend to spread spontaneously under cap-
illary forces alone (spontaneous wetting). Under these
transient conditions, the instantaneous dynamic contact
angle will relax, decreasing from 180◦ at the moment
of contact towards its static value. At the same time, the
contact-line velocity will decrease from its initial value
to zero at equilibrium [3.51]. The reverse situation is ob-
served if we forcibly spread a liquid on a surface that
it wets only partially and then allow it to break up and
retract into individual droplets (spontaneous dewetting).
In this case, the contact angle will increase from its value
on rupture towards its static value. Because of contact
angle hysteresis, the final, static values may differ.

Since both forced and spontaneous wetting and
dewetting are examples of moving contact lines, it
should be possible to describe them in some equiva-
lent way. Since the processes occur at a finite rate,
possibly with associated changes in the shape of the
liquid, but certainly with changes in the wetted area, the
wetting processes must be dissipative. Indeed, the fact
that the observed dynamic contact angle differs from its
equilibrium value is evidence of this. Several attempts
have been made in the literature to explain the observed
behaviour, however these boil down to essentially two
approaches, which differ from each other mostly in their
consideration of the effective dissipation channel.

One of these two approaches, commonly known as
the hydrodynamic theory, emphasises the dissipation
due to viscous flows within the slowly-moving wedge
of liquid near the contact line [3.52–57]. Changes in the
observed dynamic contact angle are then ascribed to vis-
cous bending of the liquid interface in this mesoscopic
region. The microscopic angle θm is usually assumed to
retain its static value θS.

The other approach, which originates from the
Frenkel/Eyring view of flow as a stress-modified mo-
lecular rate process, discards dissipation due to viscous
flow and focuses instead on that occurring in the immedi-
ate vicinity of the moving contact line due to the process
of attachment or detachment of fluid particles to or from
the solid surface [3.50, 58, 59]. According to this view,
the channel of dissipation is effectively the dynamic fric-
tion associated with the moving contact line [3.60], and
the microscopic contact angle is velocity dependent and
identical with the experimentally observed angle. This
approach is usually termed the molecular-kinetic theory.

A full discussion of these theories is beyond the
scope of this chapter, but it is helpful to outline the basic
equations and give some examples of the magnitude of
the relevant parameters. In its most simple form, the
equation describing the change in the dynamic contact
angle due to viscous bending may be written in terms of
the capillary number Ca = (µv/σ) as

θ3
D − θ3

S = 9Ca ln

(
L

Lm

)
, θD < 3

π

4
, θm = θS ,

(3.49)

where µ and σ are, respectively, the dynamic viscos-
ity and surface tension of the liquid and L and Lm are,
respectively, appropriately chosen macroscopic and mi-
croscopic length scales. Setting L = 10 µm, which is the
approximate distance from the contact line at which the
contact angle can be measured, and Lm = 1 nm, i. e., the
order of molecular size, then ln (L/Lm) is estimated to
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Fig. 3.29 Schematic representation of the velocity depen-
dence of the contact angle, illustrating the behavior of the
dynamic advancing and receding contact angles for a sys-
tem that also exhibits contact angle hysteresis. If hysteresis
is present, very low steady contact-line velocities may not
be experimentally accessible
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be of the order of 10. Experimental values vary widely,
though values of about 10 have been found frequently for
liquids that completely wet the solid. Much larger values
have sometimes been reported for non-wetting liquids.
These are usually thought to be non-physical, since
they would appear to involve sub-molecular microscopic
length scales.

For small drops and small angles (3.49) leads to
simple scaling laws for the base radius R and the instan-
taneous contact angle as a function of time t:

R(t) ∼ t1/10 , (3.50)

θD(t) ∼ t3/10 . (3.51)

These relationships have been widely confirmed for
completely wetting liquids.

According to the contrasting viewpoint provided by
the molecular-kinetic theory, the motion of the con-
tact line is determined by the statistical dynamics of
the molecules within its immediate vicinity. The key
parameters are κ0, the equilibrium frequency of the
random molecular displacements occurring along the
contact line, and λ the average distance of each dis-
placement. In the simplest case, λ is supposed to be
the distance between adsorption sites on the solid sur-
face. The driving force for the wetting line to move in
a given direction is taken to be the out-of-balance sur-
face tension force that arises when wetting equilibrium
is disturbed: σ(cos θS − cos θD). The resulting equation
for the contact-line velocity is then

v = 2κ0λ sinh

[
σ(cos θS − cos θD)

λ2

2kBT

]
, (3.52)

where kB is the Boltzmann constant and T the tempera-
ture. If the argument of the sinh function is small, (3.52)
reduces to its linear form

v = κ0λ3σ
(cos θS − cos θD)

kBT

= 1

ζ
σ(cos θS − cos θD) , (3.53)

where ζ = kBT/κ0λ3 is the coefficient of contact-line
friction. This has the same units as dynamic viscosity.
While the experimentally determined values of λ are
usually of molecular dimensions, those of κ0 can vary
widely. Some examples are listed in Table 3.10. Con-
sistent with theory, experimental values of ζ are always
larger than the viscosity of the liquid (Table 3.10), and
appear to increase both with viscosity and the strength
of solid–liquid interactions.

Crucially, (3.52) and (3.53) predict scaling laws that
differ from those predicted by (3.49):

R(t) ∼ t1/7 , (3.54)

θD(t) ∼ t3/7 . (3.55)

Comparison with experiment therefore offers the oppor-
tunity of assessing which mode of dissipation may be
occurring.

Despite their fundamentally different bases, both
models have been shown to work fairly well for
experimental liquid/solid systems, though problems re-
main. As it seems likely that both types of dissipation
occur simultaneously, combined theories have been sug-
gested [3.61–63]. For example in the case of a spreading
drop, it has been predicted and apparently confirmed
that the wetting-line friction regime precedes the vis-
cous regime, which becomes dominant only as the
contact angle becomes small [3.63, 64]. However, it is
also important to mention the continuum hydrodynamics
approach adopted by Shikhmurzaev [3.63]. This accom-
modates dissipation through standard hydrodynamic
channels, but also exploits non-equilibrium thermody-
namics to describe dissipation due to the solid/liquid
interfacial formation process. One consequence of this
approach is that the microscopic dynamic contact angle
is coupled directly to the flow. Analytical expressions
can be obtained for certain simplifying conditions, such
as small capillary number, which are very effective in
describing the experimental results found in the litera-
ture [3.65, 66].

The reason for briefly discussing these theoretical
interpretations in a chapter devoted to experimental
methods is two-fold. First, experimental results, unless
used in a purely descriptive way, will have to be inter-
preted in terms of a model of some sort, though it is
important not to prejudge the observations in terms of
any given model. Secondly, it is wise to ensure that suf-
ficient ancillary measurements are made to enable the
results to be interpreted as fully as possible. For exam-
ple, in specifying the liquid, it will usually be essential
to have sufficiently accurate measurements of its viscos-
ity (assuming this to be Newtonian, which is not always
the case with industrially interesting liquids), surface
tension and density (Sects. 3.1,3.2 and 3.4). Similarly,
if comparisons are to be made between different flows,
then it is important to determine parameters such as ge-
ometry and flow rate that properly characterize them. It
may also be desirable to determine other factors such
as the roughness of the solid surface. In this latter case,
techniques such as profilometry, optical scanning mi-
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Table 3.10 Examples of the values of parameters obtained by applying the molecular-kinetic theory to experimental data
for various systems

System µ [Pa s] σ [mN/m] θS [◦] λ (nm) κ0 [s−1] ζ [Pa s]

Water on PET [3.50] 0.001 72.4 82 0.36 8.6 × 109 0.01

16% glycerol in water on PET [3.50] 0.0015 69.7 72.5 0.46 3.6 × 109 0.012

86% glycerol in water on PET [3.50] 0.104 65.8 65 0.46 3.5 × 107 1.2

Di-n-butyl phthalate on PET [3.51, 67] 0.196 34.3 < 7 1.8 1.1 × 105 6.4

Silicone oil on glass [3.50, 68] 0.958 21.3 0 0.79 2.3 × 105 35.9

Silicone oil on glass [3.50, 68] 98.8 21.7 0 0.79 2.3 × 103 3580

croscopy or, ultimately, atomic force microscopy may
be applied.

Useful reviews concerning the dynamic contact an-
gle and its interpretation can be found in the references
cited above, especially [3.50,56,57,65]. For further read-
ing, Dussan [3.69] provides a perceptive survey of the
older literature, covering both theoretical and experi-
mental aspects, while Blake and Rushak [3.70] set the
dynamic contact angle in the context of modern coating
processes.

Generic Methods
General Principles and Techniques. The general prin-
ciples of dynamic contact angle measurement can be
illustrated by describing the experimental techniques
used to study a liquid drop spreading on a flat solid
substrate. Obviously, these techniques can equally be
applied to the measurement of static contact angles, as
discussed in Sect. 3.3.1.

The drops are usually supplied via a microsyringe,
the needle of which is ground at right angles. Drop
volumes of the order of 1 µl or larger are typical. If
appropriate to the problem under investigation, useful
measurements can be made with much smaller droplets,
e.g., 100 pl [3.71], but these require special deposition
techniques. For convenience, the solid substrate should
be mounted on a three-axis translational stage. Both
microsyringe and translation stage can be motorized
and computer controlled for repeat measurements. If
required, the stage can be thermostatically heated and
the whole system enclosed in an environmental cham-
ber. Sufficient time must be allowed to equilibrate the
system before commencing measurements.

The profiles of the drops are easily captured using
a high-resolution black and white digital video camera
equipped with a suitable macro lens or long working
distance microscope having the necessary magnifica-
tion. The video camera is connected to a PC, which
enables the images to be processed in real time and/or
stored for subsequent processing. To get clear, sharp

profiles, proper illumination is crucial. Diffuse uniform
back-lighting seems to be best for routine video imag-
ing of droplet profiles, whereas a collimated light source
(Koehler illumination) is better for very precise meas-
urements in the vicinity of the wetting line or for very
small drops. Some means of adjusting the intensity of
the light is desirable, such as a proprietary control unit
or neutral density filters.

Existing set-ups are capable of capturing objects
with sizes ranging from a fraction of a millimetre (such
as ink-jet droplets) to about one centimetre. A typical
image of a sessile drop is shown in Fig. 3.30. A com-
puter program using suitable edge-detection algorithms
and contour fitting then finds the contact angles from the
profile. Typically, a full profile is discretised into about
1500 points and the best parameters are calculated in
a few seconds.

Deposited drops are not always axially symmetric,
so it is helpful to divide the data set for each drop into
four parts, specifically the left and right side of the drop
and left and right side of its reflection in the substrate.
For each part we can calculate the best parameters to fit
the Young–Laplace equation (Sect. 3.2) for the capillary
pressure drop across a curved interface. For a drop in
a gravitational field in the z direction, the equation may
be written as

∆ρgz = σ

⎢⎢⎢⎢⎣ z′′(
1+ z′2

)1/2
+ z′

x
(

1+ z′2
)1/2

⎥⎥⎥⎥⎦ ,

(3.56)

where z′ = dz/dx, z′′ = d2z/dx2, ∆ρ is the difference
in density between the drop and the air and g the ac-
celeration due to gravity. In doing this, we are assuming
implicitly that the Young–Laplace equation can describe
the shape of non-equilibrium interfaces. This is true if
the capillary number based on the contact-line velocity
is small, but even if this approximation is not strictly
valid, the procedure will usually give an acceptable fit
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to the experimental data. See [3.72] for an experimental
investigation of the influence of viscous deformation on
the shape of a liquid meniscus during the immersion of
a vertical cylinder into a pool of liquid.

To calculate the contact angle between the liquid and
the substrate, it is vital to locate the exact position of the
contact line. To find this with high precision, one should
expand or contract the calculated profiles of the drop
and its reflection, until they intersect each other sym-
metrically about the plane of the solid. The angle of the
resulting curve with this plane is then easily calculated.
Using this procedure, it is possible to calculate the left
and right contact angles independently. Any small dif-
ference between the two angles is an indication of the
precision of the measurement and/or the non-uniformity
of the solid surface. This technique also allows one to
edit the profile to eliminate anomalies. For example, it
allows one to leave the needle used to deposit the liquid
inside the drop while capturing the image; any deforma-
tion associated with the needle is edited out afterwards.
To minimise the effect on the precision of the measure-
ments, the diameter of the needle should be less then
1/3 of the diameter of the drop. With the needle inside
the drop, it is possible to measure both advancing and
receding contact angles by adding or subtracting liquid.

Another possibility is to set the focus on one con-
tact region, rather than the whole drop. In this way,
a higher magnification can be used, but information
about the rest of the profile is lost. The profile of the
part of the drop near the solid and its reflection can
be fitted by a simple curve, such as a circular arc or
a straight line. Both kinds of fits are satisfactory, and
result in systematic differences in the contact angle of
no more than 2◦. One of the main advantages of this
approach is that it can be fully automated and applied
to geometries other than a spreading drop. It is par-

Fig. 3.30 Image of the profile of a sessile drop of water
on an oxidized silicon wafer chemically grafted with oc-
tadecyltrichlorosilane. Here the equilibrium contact angle
is 105◦

ticularly useful in forced wetting experiments, such as
those involving plunging tapes (Fig. 3.31a) [3.66, 73]
or coating processes (Fig. 3.31b) [3.49, 74, 75] where
the wetting line remains more-or-less stationary in the
frame of observation. With plunging tapes, a clearer im-
age of the meniscus is obtained if the tape is curved
slightly across its width at the point of entry into the
liquid, creating what amounts to a plunging cylinder.
By viewing along a tangent to the curve the contact an-
gle can be measured at a single point rather than across
the whole width of the tape [3.66]. Further details con-
cerning dynamic contact angle measurements in these
more specialised situations can be obtained from the
references given.

A standard video system captures 50 or 60 images
per second, giving one image every 20 or 17 ms. How-
ever, high-speed cameras and recording systems with
rates up to at least 1000 frames per second are read-
ily available and are especially helpful in determining
the contact angle in the early stages of spreading [3.71].
Even higher effective framing rates are attainable using
stroboscopic methods and suitable triggering. With such
techniques, a temporal resolution of 1 µs is relatively
straightforward and is especially helpful in studying
rapidly evolving phenomena such as droplet deposi-
tion. However, high-speed imaging necessitates very
high data transfer rates and may pose storage problems.
Applied to dynamic contact angle measurements, they
are more suitable if used with circular-arc or straight-
line fitting techniques rather than those involving fitting
entire profiles.

Computer programs for controlling drop deposi-
tion, image-capture and data processing can be custom
written using standard methods. For image processing
public domain packages such as NIH image are freely
available [3.76]. Alternatively, all aspects of control
and contact angle measurement can be implemented
using high-level commercial software such as Lab-
View or other scientific programming language, paying
special attention to the quality of the edge detection
algorithm. Commercial contact angle apparatus incor-
porating many of the features described above can also
be purchased, but care should be taken to ensure they
fully meet experimental requirements.

In practice, the solid/liquid systems that can be an-
alyzed using the techniques described above have to
meet the following requirements. First, the time of
spreading should fall within the time frame of the
equipment. This means that the contact angle should
not change too much between consecutive images.
Drop spreading exhibits the highest velocities just af-
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ter deposition. Secondly, the first angle that can be
measured clearly has to differ significantly from the
equilibrium angle. If this is not the case, the dynamic
behaviour is too fast to be captured. For example in
inkjet printing most of the spreading process is over
within 0.1 s [3.71]. Thirdly, the contact angles have to
be larger then about 5◦. Below this value, the angle
cannot be distinguished from zero. Special techniques
are required such as the optical interference methods
used to study thin liquid films. It follows also that an-
gles greater than about 175◦ cannot be distinguished
from 180◦.

Example. Figure 3.32 shows the results obtained on
depositing 0.5 to 1 µl droplets of di-n-butyl phthalate
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Fig. 3.31 (a) Image of a polyester tape entering a pool of
aqueous glycerol at 0.05 m/s [3.70]. The tape is bent into
a slight curve (to the left). By viewing along a tangent to
the curve, the contact angle is measured at a single point
rather than across the whole width of the tape. The air
appears dark due to internal reflection. The dynamic contact
angle through the liquid was determined to be (143±2)◦.
(b) Flow visualization of curtain coating showing the liquid
impinging onto the moving substrate and being coated to
the left as a uniform layer [3.49]. The various interfaces
are marked by light scattered from streams of hydrogen
bubbles, which are reflected in the interfaces and therefore
appear doubled. The contact angle through the liquid was
determined to be (140±5)◦

(DBP) onto poly(ethyleneterephthalate) (PET) [3.51].
The dynamic contact angle is plotted as a function
of time after deposition. The density, dynamic viscos-
ity and the surface tension of the DBP (Fisons, SLR
grade, 99%) were respectively 1.04 g cm−3, 19.6 m Pa s
and 34.3 mN/m at the temperature of the experiment
(21 ◦C). The PET was provided by Kodak Ltd. as a flex-
ible and transparent 35 mm tape. When fixed to a rigid
solid (in this case a glass slide), the surface is flat. The
PET has a low roughness and shows a homogeneous,
moderately low energy surface giving small contact an-
gle hysteresis with organic liquids. The DBP droplets
eventually spread to achieve a static advancing contact
angle of less than 7◦.

Repeatability of the experimental curves is excellent
except for the first few data. If we adjust the starting
time, the curves collapse perfectly. This means that the
experiment is fully reproducible, except for the initial
condition. This is not a problem, as all the equations can
be expressed in terms of velocity relative to the initial
time. The standard deviation of the data indicates the
error on the individual measurements to be to be less
than 1◦.

Data Analysis. Figure 3.33 shows advancing dynamic
contact angle data for DBP on PET obtained using the
plunging tape method [3.51, 67]. At the lowest exper-
imental velocity, the contact angle is about 16◦. The
contact angle increases with increasing velocity. Air en-
trainment is seen when the contact angle is close to
180◦ (v ≈ 52 cm/s). This kind of curve is typical of the
steady-state wetting behaviour observed for Newtonian
liquids [3.50]. In forced wetting experiments, such as
this, one obtains the dynamic contact angle directly as
a function of wetting velocity, allowing direct theoretical
comparison by standard curve-fitting techniques.

On the other hand, with spreading drops, some analy-
sis is required to obtain the data in this direct form or to
compare the results with theory. Only then can the result-
ing parameters be related to the physical characteristics
of the system. To do this, one can make use of the scaling
laws given in Sect. 3.1.2, however a more thorough an-
alysis is preferable. For a fixed set of flow conditions, all
the equations describing the different theoretical models
can be expressed in general terms as

v = dR

dt
= f (θD, θS, σ, µ . . . P1, P2 . . . ) , (3.57)

where f is an independent or at most a weak function
of the base radius R, and P1, P2, etc. stand for the
theory-specific parameters of interest, e.g., L/Lm for

Part
B

3
.3



118 Part B Measurement of Primary Quantities

0
0

-��	����

4���������)�	���	)�
20

�0

!0

�0

�0

! � � � �0 �! ��

Fig. 3.32 Dynamic contact angle as a function of time for
droplets of DBP on PET. The plot shows two sets of
data: (circles) spreading followed for 5 s, and (triangles)
spreading followed for 13 s (after [3.51])

the hydrodynamic theory, or either ζ or κ0λ and λ2/kBT
for the molecular-kinetic theory. In addition, we have
the following relation between R and the instantaneous
contact angle θ at any time t:

R =
(

3V

π

)1/3 sin θ(
2−3 cos θ + cos 3θ

)1/3
. (3.58)

Here, it is assumed that the drop has the shape of a spher-
ical cap ( Bond number Bo = ∆ρgV 2/3/σ � 1) and that
the volume of the drop V is constant (the liquid has low
volatility). Differentiating this equation yields

dR

dt
= −

(
3V

π

)1/3
(1− cos θ)2(

2−3 cos θ + cos 3θ
)4/3

dθ

dt
.

(3.59)

Finally, on combining (3.53) and (3.55), we obtain

dθ

dt
= −

( π

3V

)1/3
(
2−3 cos θ + cos 3θ

)4/3

(1− cos θ)2

× f (θD, θS, σ, µ, P1, P2 . . . ) . (3.60)

For a given system and initial conditions [e.g.,
θ(t = 0) = 180◦], (3.60) may be solved by a Runge–
Kutta algorithm [3.77] to find the curve θ(t). This
theoretical curve is then compared with the experimen-
tal data. The total difference between both curves is
minimized by adjusting the values of the parameters
P1, P2, etc. using the downhill Simplex or Levenberg–
Marquard methods [3.77]. Although this provides one
with the best-fit parameters related to the experimen-
tal data, it does not give any indication of the expected
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Fig. 3.33 Dynamic contact angle as a function of contact-
line velocity for a PET tape plunging into a pool of DBP
(after [3.51, 67])

errors on these values. Indeed, the calculated total dif-
ference is merely a measure of the quality of the fit, not
its reproducibility. Furthermore, if the system is over-
dimensioned (e.g., if the parameters P1, P2, etc. are
linearly dependent), the error on one or more parameters
can diverge to infinity. To analyse the reproducibil-
ity of the fits, one may use the so-called bootstrap
method [3.77]. With this powerful method, the origi-
nal experimental data are used as the basis for a Monte
Carlo simulation. From the original data set, 37% (i. e.,
1/e) randomly chosen points are replaced by duplicates.
The duplicate points are chosen according to a normal
distribution function, with the original data as average
and the expected error on each datum as the standard
deviation. In this way, we replace the original data set
with a new one, for which the corresponding parameters
are then calculated using the method described above.
Successive cycles result in a simulated set of values for
each parameter. If enough cycles are used (> 100), these
sets turn out to be normally distributed, providing one
with the mean value and standard deviation for each
parameter.

Other Techniques
In this chapter, the spreading drop technique has mainly
been used to illustrate the generic methods of dynamic
contact angle measurement. However, several others,
such as those based on plunging tapes and coating vi-
sualisation, have been touched on, as they are very
powerful methods of studying forced wetting and are
therefore prominent in the current literature. For simi-
lar reasons, two other approaches also deserve specific
mention.
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The first involves calculating the dynamic contact
angle from the force exerted on a plate or fibre as it
immersed or withdrawn from a pool of liquid [3.78].
Suitable equipment is available commercially or can be
adapted from a Wilhelmy plate surface tension appara-
tus (Sect. 3.2.5). Useful data can be obtained over a good
range of low speeds (typically 10−4 –1 cm/s) provided
the solid is available in a suitable form. The surface
tension of the liquid must be determined in a sepa-
rate experiment, e.g., using a completely wetted plate
(θS = 0).

The second approach is based on direct or indirect
measurements of the dynamic contact angle during cap-
illary flow. In principle, the angle can be determined
indirectly from measured parameters (such as the menis-

cus velocity, distance of penetration, and/or the pressure
drop down the tube) provided the flow can be accurately
modelled [3.79]. But, this is difficult and the most re-
liable methods are usually based on direct microscopic
observation of the moving meniscus [3.68,80,81]. Both
the Wilhelmy plate and capillary flow methods can be
used in steady-state or transient modes.

Finally, mention should be made of simulation
methods in which the “experiments” are done using
computational techniques such as molecular dynam-
ics [3.60, 82]. Traditionally, these are not seen as
experimental methods, however as computer power in-
creases, such techniques will find increasing value where
true physical experiments are currently very difficult or
essentially impossible.

3.4 Viscosity

In this section viscometers for the measurement of the
viscosity of Newtonian fluids over a wide range of ther-
modynamic states with high precision are described. In
the first three types of viscometers considered, a solid
body is forced to perform oscillations while immersed in
the fluid. The characteristics of the oscillation are deter-
mined by the viscosity of the fluid. In the two other types
of viscometers non-oscillatory flow is employed, in one
case by the fluid flow through a capillary tube, and in the
other a body of revolution falling under gravity through
the fluid. Each has its merits, which are discussed.

The dynamic viscosity µ of a fluid is a measure of its
tendency to dissipate energy when it is disturbed from
equilibrium by a velocity field v, which distorts the fluid
at a rate ε̇ij given by

ε̇ij = 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
. (3.61)

For viscous Newtonian fluids the viscosity is defined by
the constitutive equation

σij = −Pδij +µ

(
∂vi

∂x j
+ ∂v j

∂xi
− 2

3
δij

∂vk

∂xk

)
. (3.62)

In this equation, σij are the instantaneous stresses P the
pressure and δij is the Kronecker symbol. In (3.62) it is
assumed, as usually done, that the so-called volume (di-
latational) viscosity is zero. The viscosity depends on
the thermodynamic state of the fluid and is usually spec-
ified by the pairs of variables (T , P) or (T , ρ) for a pure
fluid, to which must be added a composition depen-
dence in the case of mixtures. While (3.62) incorporates
the viscosity it does not immediately suggest means of

measurement because it is impossible to measure local
shear stresses. It should further be pointed out that the
type of rheometers that will be discussed undoubtedly
will have a shear rate that is not constant – thus, the
measured moment of the shear stress is measured at one
location but the rate of strain is not known at the same
location. Thus, methods of measurement of the viscosity
must be based on the determination of some integral ef-
fect of the stresses amenable to precise measurement in
a known flow field. Inevitably, the imposition of a shear
field generates small pressure differences and dissipa-
tion causes local temperature gradients, both of which
change slightly the reference thermodynamic state to
which a measurement is assigned, from the initial, un-
perturbed, equilibrium state. The reference state for the
measurement will be obtained by averaging so that it is
important that the system is disturbed as little as possible
from equilibrium during measurement.

3.4.1 Oscillating-Body Viscometers

Oscillating-body viscometers consist of an axially sym-
metric body suspended from a torsion wire so that the
body performs oscillations in the fluid about its axis of
symmetry. The oscillator can be a disk (oscillating freely
or between fixed plates), a sphere or a cup. The fluid usu-
ally surrounds the oscillator but, in the case of the sphere
or the cup, it can be inside them. The suspension wire is
elastic and the system is gently rotated to start a motion.
The fluid exerts a viscous drag on the oscillator caus-
ing the angular frequency of the oscillation ω and the
damping decrement ∆ of the resulting simple harmonic
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motion to be different from those in vacuum, ω0 and ∆0.
The magnitude of the change depends on the viscosity
and on the density of the fluid in addition to the physical
characteristics of the oscillator. Measurements of ω, ω0,
∆, and ∆0 can give the viscosity of the fluid with very
low uncertainty, if the density is known from an indepen-
dent determination. The only measurements necessary
in this technique are those of mass, length and time, in
addition to those of the pressure and temperature, all of
which can be made with a very high resolution. It is rela-
tively straightforward to make the induced perturbation
small, so that a near-equilibrium state is maintained.

The characteristic equation for the torsional mo-
tion of any oscillating body viscometer can be
expressed [3.83, 84] as

(s +∆0)
2 +1+ D(s) = 0 . (3.63)

Here, D(s) is the torque on the body, calculated from
solutions for the fluid flow close to the oscillating body.
It is therefore the torque D(s) that is characteristic of the
particular type of oscillating viscometer employed.

Apart from roots that are associated with the initial
oscillatory behavior of the body, the roots associated
with the long-time behavior [3.83, 84] can be written in
the form

s = ±(i−∆)θ (3.64)

where i is the imaginary unit and

θ = τ0

τ
. (3.65)

Here, τ is the period of oscillation in the fluid and the
subscript zero denotes the same quantity in vacuo. The
motion associated with these roots, characterized by an
angular displacement a of an axially symmetric body, is

a(t) = a0 e−∆θω0t cos (θω0t) , (3.66)

and this is the motion observed experimentally after an
initial transient of about two periods.

Since the characteristic equation is complex, two
equations, the real and imaginary parts are obtained from
(3.63).

2θ(∆0 − θ∆)+ Im[D(s)] = 0 , (3.67)

(∆0 − θ∆)2 +1− θ2 +Re[D(s)] = 0 . (3.68)

Equation (3.68), for the real part, can be used to de-
termine viscosity but it requires a higher precision in
measurement to achieve the same accuracy in the vis-
cosity as can be attained using the imaginary part of the
equation. Consequently (3.67) for the imaginary part has
usually been preferred.

Before proceeding it is important to introduce a nat-
ural length scale that appears in oscillatory systems,
namely the boundary-layer thickness defined as

δ =
(

µ

ρω0

)1/2

. (3.69)

This natural length scale is important in the selection
of the dimensions of oscillating-body viscometers for
particular purposes as the following three sections de-
scribing specific oscillating-disk, oscillating-cup and
oscillating-sphere viscometers will show.

Oscillating-Disk Viscometers
One of the first very successful oscillating-disk viscome-
ters was developed by Kestin and Leidenfrost [3.85]
in 1959, to measure the viscosity of gases near room
temperature, in the pressure range 0.1–60 MPa.

The basic design of such a viscometer, consists of
a disk of radius R, thickness d and moment of inertia I ,
oscillating between two parallel fixed plates at distances
b1 and b2 from its surfaces. Figure 3.34 shows a devel-
opment by Vogel [3.86] of the early disk viscometers of
Kestin and his collaborators. The configuration between
two fixed plates has generally been preferred to a free
disk, because the presence of the two parallel fixed plates
tends to increase the viscous drag on the disk, and hence
produce a decrement that is easier to measure with high
accuracy. The plates also reduce the likelihood of influ-
ence from spurious free convective flows within the bulk
of the fluid. The characteristic equation for the torque
D(s) for this configuration is [3.84]

D(s) = π R4µs

Ibω0

[
CN + s

3
β1β2 − s2β

90
(β2

1 +β2
2)

+ s3β

945

(
β2

1 +β2
2

)
+ . . .

]
, (3.70)

where

β1 = b1

δ
, β2 = b2

δ
, (3.71)

β = b

δ
, b = 2b1b2

(b1 +b2)
. (3.72)

Equation (3.70) is valid if

b1 +b2 +d � R and b1 +b2 +d � δ . (3.73)
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These conditions are readily met in the dilute and
moderately dense gas states, so that (3.70) can be em-
ployed as the basis of the evaluation of the viscosity of
the fluid. The quantity CN is an instrumental constant
that depends only on the linear dimensions of the os-
cillatory system. It is unity for a disk of infinite radius
and zero thickness. Expressions can be found for it for
real geometries in the literature [3.83, 84]. The instru-
ment constant can thus be evaluated independently from
the characteristics of the assembled instrument. This al-
lows the formulation of the final working equation for
the disk instrument to be written as

CN =
[

2I

πρbR4
(θ∆−∆0)+ f1θ∆

]
β2

+ f2θ
2(3∆2 −1)β4 + f3θ∆(∆2 −1)β6 ,

(3.74)

where the coefficients f1, f2 and f3 only depend on the
distances d1 and d2 between the disk and the plates

f1 = 1

6

[(
d1

d2
+1

)
+

(
d2

d1
+1

)]
, (3.75)

f2 = 1

720

[(
d1

d2
+1

)3

+
(

d2

d1
+1

)3
]

, (3.76)
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Fig. 3.34 Oscillating-disk quartz viscometer developed by
Vogel (after [3.86])

f3 = 1

7560

[(
d1

d2
+1

)5

+
(

d2

d1
+1

)5
]

. (3.77)

Equation (3.74) is a cubic equation in the square of β and
the coefficients depend only on measurable quantities.
The instrument can be used to obtain absolute measure-
ments of the viscosity by solution for β for measured
values of the frequency and damping of oscillations in
the fluid and in vacuo, if CN is known independently
since from (3.69) and (3.72)

µ = ω0ρb2

β2 . (3.78)

It is essential for the accuracy of the instrument that
a complete parallel alignment of the fixed plates and the
disk, as well as their flatness, is achieved. The theoretical
expression for CN does not take into account the small
amount of additional damping introduced by the stem
and mirror attached to the disk in order to observe the
oscillations and permit measurement of ∆, ∆0, ω and
ω0. Kestin et al. [3.87] have shown that the value of
CN calculated from experiments in five different gases
was within 0.1% of its theoretical value. The effect of
the additional damping is therefore small but not always
negligible.

Although (3.74) and (3.78) permit absolute meas-
urements to be made, the conditions on their validity,
namely the inequalities (3.73), make them inapplicable
for very small boundary-layer thicknesses, such as occur
in liquids and dense gases. In those cases an alternative
formulation of the working equation has been developed
in which an edge-correction factor is defined for an in-
strument. This edge-correction factor is a function only
of the boundary-layer thickness so that it can be deter-
mined by calibration with fluids of known properties
thus making relative measurements of the viscosity of
other fluids, possible.

There has been a large series of oscillating-disk vis-
cometers. It is worthwhile identifying some of the very
successful instruments. As already mentioned, Kestin
and Leidenfrost [3.85] developed the first instrument to
measure the viscosity of gases near room temperature,
in the pressure range 0.1–60 MPa with an uncertainty
of about 0.1%. This instrument was employed over
a wide range of conditions, including measurements near
the critical point of carbon dioxide [3.88]. Di Pippo
et al. [3.89] and Kestin et al. [3.90] designed a simi-
lar viscometer for high temperatures, up to 973 K, and
low-pressure gases, with an uncertainty ranging from
0.1–0.3% at the highest temperatures. Oltermann [3.91]
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also described an oscillating-disk viscometer for opera-
tion up to 673 K and 25 MPa in water near its critical
point, with an estimated uncertainty of 1%. Kestin
et al. [3.92] described an instrument to measure the vis-
cosity of aqueous solutions of ionic salts at temperatures
up to 573 K and pressures up to 35 MPa. It was oper-
ated in a relative mode with an estimated uncertainty of
0.3–0.5%. Finally, one of the most successful such in-
struments which is still in operation today is the quartz
oscillating-disk viscometer (Fig. 3.34) designed by Vo-
gel [3.86] for measurements on gases and vapors up to
650 K, with an uncertainty of 0.1–0.3%.

Oscillating-Cylinder Viscometers
The thick disk or cylinder configuration consists of
a cylindrical body oscillating in an essentially infi-
nite fluid. Torklep and Oye [3.93] have described an
oscillating-cylinder viscometer designed for absolute
measurements of low viscosity fluids up to temperatures
of 1200 ◦C. The uncertainty quoted was 0.1% for water,
where special efforts were made to achieve high accu-
racy, rising to 1% for routine measurements employing
time-saving procedures.

Oscillating-Cup Viscometers
An oscillating-cup viscometer consists of an axially
symmetric cylinder (cup) of inner radius R and height
H , with the fluid contained inside. Beckwith and
Newell [3.94] obtained the expression for D(s) for the
cases of a filled or partially filled cup. In the case of the
filled cup, D(s) is given by

D(s) = s3/2

I

(
Aξ + B

ξ2

s1/2
+C

ξ3

s
+ D

ξ4

s3/2

)
,

(3.79)

where I is the moment of inertia of the cup itself, and
ξ = δ/R. The coefficients in the above equation are

A = 4+ 2R

H
, (3.80)

B = −6− 32R

πH
, (3.81)

C = 3

2
+ 18R

H
, (3.82)

D = 3.2− 16R

πH
. (3.83)

There are many successful oscillating-cup viscome-
ters. Grouvel et al. [3.95] measured the viscosity of
mercury in the range 20–260 ◦C with an uncertainty
of 1.5%, while Tippelskirch et al. [3.96] employed an
oscillating-cup viscometer to measure the viscosity of

mercury from 470 to 1250 ◦C and to pressures up to
100 MPa. The uncertainty of this instrument was about
1% at the lower temperatures. Abe et al. [3.97] employed
successfully such an instrument to measure the viscosity
of molten salts in the temperature range 800–1200 ◦C.
Finally, Knapstad et al. [3.98] measured the viscosity of
many hydrocarbons up to 150 ◦C with an uncertainty of
0.5%.

Oscillating-Sphere Viscometers
In this type of viscometer, the fluid either fills a sus-
pended, spherical shell or surrounds a suspended, solid
sphere. Accurate expressions exist for the viscous torque
in either case but the viscometer has not been as suc-
cessful as have other types. This is partly because of
the difficulty of manufacturing a sufficiently precise
spherical shell, but also because the device offers little
advantage over the simpler cylindrical viscometer. Du-
mas et al. [3.99] and Brockner et al. [3.100] employed
oscillating-sphere viscometers to measure the viscosity
of molten salts. However the uncertainty in the results
achieved is higher than that obtained by oscillating-disk
or oscillating-cup viscometers.

3.4.2 Vibrating Viscometers

The essential characteristic of the oscillatory viscome-
ters discussed in the previous section was the observation
of the effect of the viscosity of the fluid on the damping
of the free, torsional motion of a rigid, solid body ei-
ther immersed within it or surrounding it. In the case of
the vibrating-wire viscometers, the oscillations involve
periodic distortions of the solid body itself, which is in
contact with the fluid whose viscosity is under investi-
gation. The main advantages of vibrating viscometers
are that the instruments are mechanically simpler than
those of oscillatory bodies, and that the volume of fluid
required for their use is much smaller, making operation
at extremes of higher pressures and temperature easier.

Vibrating-Wire Viscometer
The vibrating-wire viscometer is a particularly simple
form of vibrating viscometer, which has successfully
been employed over a wide range of conditions. Indeed,
it has played an important role in the investigation of the
superfluid character of liquid helium [3.101].

A thin, circular-section wire of radius R, density ρs,
subject to a tension, is constrained to be stationary at ei-
ther end. It is surrounded by an infinite volume of the
fluid of interest and performs oscillations transverse to
its axis in a single plane containing the axis. If the os-
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Fig. 3.35 Oscillating-cup viscometer developed by Knap-
stad et al. [3.98]

cillation is induced by an initial deflection at time t = 0
and subsequently allowed to decay, then the displace-
ment of any point on the wire ξ ultimately conforms to
a damped, simple harmonic motion [3.102]

ξa = A e−∆ωt sin (ωt +φ) , (3.84)

in which ω is the angular frequency and ∆ the log-
arithmic decrement, and the subscript a indicates the
asymptotic situation. At short times the displacement is
affected by transients that cause a departure from (3.84)

ξ = F(t)+ ξa(t) . (3.85)

However, it has been shown [3.102] that the transient
terms F(t) decay rapidly compared with the decay time
of the harmonic motion so that omission of the first few
oscillations of an experiment is sufficient to eliminate
them from consideration.

Provided that the design of the instrument is carried
out to satisfy the constraints

ε � Ω � 1

ε2
, (3.86)

where ε is the fractional amplitude of the motion, ε =
ξmax/R and

Ω = ρωR2

µ
(3.87)

and

ωε
R

C
� 1 , (3.88)

where C is the sonic velocity in the fluid, then its motion
should correspond to that of (3.84). The decrement and
frequency of the motion are related to the viscosity µ,
and density ρ, of the fluid by the equation [3.102]

∆ = (ρ/ρw)k′ +2∆0

2 [1+ (ρ/ρw)k]
, (3.89)

where k and k′ are given by

k = −1+2Im(A) , (3.90)

k′ = 2 Re(A)+2∆Im(A) , (3.91)

where

A = (i−∆0)

(
1+ 2K1(s)

sK0(s)

)
(3.92)

and

s = [(i−∆)Ω]1/2 (3.93)

and K0, K1 are modified Bessel functions. Finally, ∆0,
denotes the logarithmic decrement of the wire’s oscil-
lations in vacuo which can be determined by direct
measurement. Equation (3.87) and (3.89–3.93) can be
used to calculate the viscosity of the fluid from the loga-
rithmic decrement and the frequency of oscillation in the
fluid and the logarithmic decrement in vacuo, provided
that the density of the fluid is known.

Only one correction to the working equations given
above is significant (> 0.01%) and that arises from the
fact that it is necessary to enclose the fluid within a solid
wall. A correction for this effect has been derived [3.102,
103] and it is rather straightforward to allow for the
presence of the boundary.

In the vibrating-wire viscometer [3.104,105] shown
in Fig. 3.36, the vibrations of the metallic wire are
stimulated by a pulse of current through the wire in a per-
manent magnetic field. The observation of the motion of
the wire uses measurements of the signal induced across
the wire as it oscillates perpendicular to the same field. In
the particular instrument shown, samarium–cobalt alloy
permanent magnets provide the 1 T magnetic field re-
quired. The wire, at its lower end carries a central weight
W . This weight is connected through a balancing mech-
anism to an outer stainless-steel weight. The balancing
mechanism acts as a fulcrum for the two weights. The
volumes of the two weights are chosen so that the net
effect of changing the density of the surrounding liquid
results in a negligible effect upon the tension in the wire
and thus the frequency of oscillation. At the same time
the difference in their masses produces a constant ten-
sion in the wire. The way of supporting the two weights
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also produces a preferred plane of oscillation for the
wire from among the degenerate set. The signal induced
in the vibrating wire is observed with a bridge, and the
out-of-balance signal, amplified by 30 000 times, is then
interrogated with an analogue-to-digital (A/D) converter
coupled to a computer. Representation of the decaying
harmonic signal allows the determination of the fre-
quency and decrement. This process is repeated in vacuo
to provide all the information necessary to evaluate the
viscosity using (3.87) and (3.89–3.93).

The uncertainty in the viscosity measurements made
with such viscometers operated in an absolute manner
is better than ±3%. Most of the uncertainty arises from
those in the diameter of the vibrating wire and its density
if they are determined independently. These two param-
eters can be determined with a greater precision through
measurements on a fluid of known viscosity. When oper-
ated in the relative manner suggested by this calibration,
the accuracy of viscosity measurements can be improved
to one of ±0.5%, limited only by the uncertainty in the
standard reference values for the viscosity. The preci-
sion in the viscosity measurements for liquids is about
±0.1%. For measurements in gases, the uncertainty is
about ±1% when operated in an absolute way, and bet-
ter than ±0.5% in a relative manner. Vibrating-wire
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Fig. 3.36 Schematic diagram of a vibrating-wire viscome-
ter for liquids developed by Assael et al. [3.104] and
Oliveira [3.105]

viscometers have successfully been operated at Thes-
saloniki [3.104], London [3.105], Rostock [3.106] and
Lisbon [3.107] over a wide range of conditions. A simi-
lar type of viscometer, but with the magnets outside the
pressure vessel, was operated in Amsterdam [3.108].
The same types of viscometer have been operated in
a continuous mode as well as the transient mode de-
scribed here. In that case the resonant characteristics
of the wire’s vibrations have been measured with an
impedance analyzer. These measurements have essen-
tially the same accuracy as those performed in a transient
mode but they have been used to make simultaneous
measurements of density and viscosity on a single fluid,
which has obvious advantages.

3.4.3 Torsional-Crystal Viscometer

The torsional piezoelectric-crystal viscometer was intro-
duced by Mason [3.109] in 1947. It has several important
advantages over other viscometers. It can cover a very
large viscosity range, from about 10–105 µPa s, per-
mitting measurements in a wide range of fluid states,
ranging from low-pressure gases to liquids near freezing.
The motion of the crystal is exceedingly small although
of high frequency.

The basic principle of the technique is the follow-
ing. If a cylinder of piezoelectric material is cut with its
axis along the x-axis (electric), and a sinusoidal voltage
is applied to four electrodes at its quadrants, the cylinder
will vibrate with a nearly pure internal torsional motion.
When the crystal is immersed in a fluid, a shear wave
will be produced in the fluid and will be rapidly atten-
uated as it moves normal to the surface of the crystal.
The viscous drag, exerted by the fluid on the surface
of the crystal, changes the crystal’s resonant frequency,
its conductance at resonance, and its bandwidth at res-
onance from their values in vacuo. The equation, most
frequently employed in recent work [3.110]

µρ = π f e

(
M

S

)2 (
∆ f e

f e
− ∆ f0

f0

)2

, (3.94)

relates ∆ f e, the crystal’s bandwidth at resonance to the
viscosity–density product of the fluidµρ. Here, M, S and
f e are the mass, surface area, and resonant frequency of
the crystal, respectively, while the subscript zero refers
to the equivalent quantities in vacuo. In common with
others this working equation neglects departures from
pure torsion in the motion of the crystal and in the motion
of the fluid.

Crystalline quartz is usually selected as the piezo-
electric material because of its superior physical
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properties. Crystal preparation includes obtaining the
highest-quality starting material, orienting the cylinder
axis along the x-axis (electric), grinding and polish-
ing, locating the z-axis (optic) properly, sawing surface
grooves at the midplane and parallel to the z-axis or
plating electrodes on the crystal, measuring the crys-
tal dimensions, and cleaning with appropriate solvents.
Most torsional crystals have had electrodes plated di-
rectly on the surface of the crystal. However, several
transducers [3.111, 112] have had a gap containing
the test fluid between the surface of the crystal and
the electrodes. An example of this type is shown
in Fig. 3.37. This viscometer gives small repeatable
bandwidths in vacuo. A typical crystal has a length
of 5 cm, a diameter of 0.3 cm and a 39.5 kHz reso-
nant frequency, which yields a fluid boundary layer of
about 10−4 cm, whereas the gap containing the fluid is
about 5 × 10−2 cm.

Torsional-crystal viscometers are in regular use to-
day by Haynes [3.111], Diller and Frederick [3.112],
Bode [3.113], dos Santos [3.114] and others. Diller
and Frederick [3.112] have succeeded in expanding the
temperature range of application up to 600 K. The es-
timated uncertainty of measurements made with these
viscometers is about 2%.

3.4.4 Capillary Viscometers

Capillary viscometers are the most extensively used in-
struments for the measurement of viscosity, especially
for the liquid phase. They have the advantage of simplic-
ity of construction and operation. They are in regular
use in many countries, for standard measurements in
support of industrial investigations of the viscosity of
liquids at atmospheric pressure. Hence the first section
describes such instruments, while the second section
describes capillary viscometers for gases and liquids at
high pressures.

The principle of the capillary viscometer is based on
the Hagen–Poiseuille equation of fluid dynamics (first
formulated by Hagen in 1839) and its alteration for prac-
tical viscometry by Barr [3.115] in order to include the
so-called kinetic-energy correction and the end correc-
tion. The resulting equation expresses the viscosity of
a fluid flowing through a thin capillary, in terms of the
capillary radius a the pressure drop along the tube ∆P
the volumetric flow rate Q and the length of the tube L
as

µ = πa4∆P

8Q(L +na)
− mρQ

8π(L +na)
, (3.95)

#�����	�	�����	�

���%��	�

$����	��"��
�����		��%��	

A����6�������	�

�����������������	
����	�

B��������

3�	���������
�

�

Fig. 3.37 Torsional-crystal viscometer developed by Diller
and Frederick [3.112]

where n is the end-correction factor and m is the kinetic-
energy correction factor with L 	 a. The above equation
is derived on the assumptions that:

1. the capillary is straight with a uniform circular cross
section,

2. the fluid is incompressible and Newtonian, and
3. the flow is laminar and there is no slip at the capillary

wall.

The correction factors n and m reflect the fact that
in a practical viscometer two chambers must be placed
at either end of the capillary in order to measure the
pressure drop. Thus, for example, the parabolic velocity
distribution characteristic of most of the flow can only be
realized some distance downstream from the inlet of the
capillary. Kestin et al. [3.116] obtained theoretical values
for the two correction factors in the range of Reynolds
numbers 0.5 ≤ Re ≤ 100, as

m = m0 + 8n

Re
, (3.96)

where

m0 = 1.17±0.03 and n = 0.69±0.04 . (3.97)

There are also a number of experimental determinations
of m and n. The values for m proposed by Swindells
et al. [3.117] are

m = 1.12 to 1.16 for 106 ≤ Re ≤ 648 , (3.98)

while Kawata et al. [3.118] reported

m = 1.08 to 1.16 for 46 ≤ Re ≤ 1466 , (3.99)

n = 0.79 to 0.88 for Re < 0.14 . (3.100)
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There are a number of other secondary corrections to
the working equation that can be found in literature. The
most important ones are the effect of coiled capillar-
ies [3.119], especially for gas phase measurements, the
consequences of the nonuniformity of the capillary cross
section [3.115] and the effects of surface tension in the
case of the study of liquids.

Capillary Viscometers for Liquids
The capillary method has been employed for the abso-
lute determination of the viscosity of primary standard
liquids. The present viscosity standards within the
International Organization for Standards (ISO), the
American Society for Testing and Materials (ASTM),
the Japanese Industrial Standards (JIS), the Deutsches
Institut für Normung (DIN) are based on work by
Swindells et al. [3.117] in 1952 with an absolute cap-
illary viscometer. This group of workers determined the
viscosity of distilled water at 20 ◦C and at atmospheric
pressure. A schematic diagram of this viscometer is
shown in Fig. 3.38. The viscometer itself was mounted
in a thermostat bath together with a differential mer-
cury manometer. The viscometer capillary, made of high
quality glass tubing, had a radius of 0.2 mm, and was
fitted into a glass chamber at either end. The flow of
water through the capillary was generated by a piston–
cylinder arrangement indicated as the main injector.
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Fig. 3.38 Schematic diagram of the absolute capillary viscometer
for water developed by Swindells et al. [3.117]

The mercury injector in the auxiliary bath forced mer-
cury into the entrance chamber of the capillary and
displaced water through it. The manometer consisted
of a mercury-filled U-tube. The work of Swindells
et al. [3.117], was characterized by great care in every
aspect of measurement, to ensure the highest possible
precision. The final value of the viscosity of water had
an estimated uncertainty of better than 0.1%. Kawata
et al. [3.118] described an absolute viscometer, em-
ploying a horizontal capillary, in order to check the
value produced by Swindells et al. [3.117]. The accuracy
claimed for all of these measurements has since been
challenged and greater uncertainty bounds allowed but
the absolute value reported by Swindells et al. remains
intact.

For precise, measurements of the viscosity of liq-
uids relative to this standard value, the capillary master
viscometer shown in Fig. 3.39 is employed. The princi-
ple of each of the suspended-level viscometers shown
in Fig. 3.39, is the measurement of the time taken for
the meniscus of the sample liquid to fall from one tim-
ing mark to another in one arm of the viscometer. The
marks are generally either side of a timing bulb and
define the volume of liquid that flows during an ex-
perimental run under the influence of gravity. A master
viscometer has a longer capillary, a larger timing bulb of
oval shape and a cylindrical lower bulb compared with
a routine viscometer. These differences serve to mini-
mize the various errors, and render negligible the effect
of the second term in (3.95).

For a capillary master viscometer, if Q = V/t, where
t denotes the time required for volume V (in the tim-
ing bulb) to flow through the capillary, and ∆P = ρgh,
where h is the mean effective height of the liquid column,
then (3.95) becomes

µ = πa4ght

8(L +na)V
− mV

8π(L +na)t
(3.101)

or

µ = c1t − c2

t
, (3.102)

where c1 and c2 are obtained from (3.101).
Routine capillary viscometers are used for many in-

dustrial measurements because they are very simple to
use and permit rapid operation while yielding results of
adequate accuracy. Some variations of such routine vis-
cometers from among the many variants are shown in
Fig. 3.39. For these viscometers (3.102) remains valid
but the constants c1 and c2 are determined by calibra-
tion with fluids of known viscosity rather than from
theory.
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Capillary Viscometers for High Pressures
The capillary method is also suitable for application to
gases and liquids at high pressures. However, in addition
to the factor discussed in the previous section, a num-
ber of special precautions have to be considered. For
example for measurements on gases, the measurement
of the flow rate is difficult and corrections for com-
pressibility and for slip at the capillary wall have to be
considered. In addition, measurements at high pressures
require a high-pressure construction for the whole sys-
tem, a manometer to measure a small pressure difference
in the presence of a high total pressure etc.

Assuming the fluid to be an ideal gas and the pres-
sure drop between both ends of the capillary small, then
the correction for compressibility is simple, and (3.95)
becomes

µ = πa4(P1 − P2)

8Q1(L +na)

(P1 + P2)

2P1

− ρ1 Q1

8π(L +na)

(
m + log

P1

P2

)
, (3.103)

where P1 and P2 are the pressures at the inlet and the
exit of the capillary and Q1 is the volumetric flow rate at
entry. The slip correction, proposed by Knudsen for such
circumstances, modifies the working equation to [3.83]

µ = πa4(P1 − P2)

8Q1(L +na)

(P1 + P2)

2P1

(
1+ 4ζ

a

)
, (3.104)

where the slip correction ζ is calculated as

ζ = 2.16µ

√
4

π(P1 + P2)ρ
. (3.105)

For high-pressure and/or high-temperature measure-
ments, coiled capillaries are sometimes employed in
order to secure a sufficiently long flow tube while
maintaining uniformity of temperature. This kind of ar-
rangement modifies the basic working equation because
of the introduction of new velocity components into the
flow. In most circumstances the effects can be treated
as a correction to the basic equation so long as appro-
priate care is taken. A successful gas capillary designed
by Michels and operated by Trapeniers et al. [3.119]
for measurements on gases up to 100 MPa, is shown in
Fig. 3.40.

Nagashima et al. [3.120] employed a closed-circuit
capillary viscometer for measurements of the viscosity
of water and heavy water in the liquid and vapor phase at
temperatures in the range 50–500 ◦C and pressures up
to 80 MPa. A similar apparatus was described by Rivkin
et al. [3.121] for measurements in the critical region of
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Fig. 3.39 Capillary master and routine viscometers

water. Guevara et al. [3.122] employed a capillary vis-
cometer for gases up to 2000 K while Ejima et al. [3.123]
applied a capillary viscometer to measurement of the
viscosity of molten salts up to 1200 K.

3.4.5 Falling-Body Viscometers

Falling-body viscometers involve the use of the time
of free-fall of an object under the influence of gravity
through the fluid of interest to determine the viscosity.
Generally, the falling body is a body of revolution and
has most commonly been a sphere or a cylinder. Gener-
ally, the instruments are not among those of the highest
accuracy because it is rather difficult to ensure that the
instrument operates in line with a theory of it. However,
exceptionally, such instruments have been used for ac-
curate measurements including work in Japan on a new
standard reference viscometer [3.83]. More usual instru-
ments of the same type have a number of advantages for
operation at very high pressures that make them useful
for routine measurements in industry.

Falling-Sphere Viscometer
The principle of a falling-sphere, or falling-ball, vis-
cometer is based on Stokes’ law. This law results from
the creeping-flow Stokes equations valid for very low
Reynolds numbers. For that reason this type of viscome-
ter is usually applicable to the precision measurement of

Part
B

3
.4



128 Part B Measurement of Primary Quantities

+��!!� �������,
�� #�����
	
�-�.##�)��#�
��

+�!

/
�0����)�
� 
��!

+�!

/��!!����1�!!��

2�

Fig. 3.40 High-
pressure gas
capillary
viscometer de-
veloped by
Trapeniers
et al. [3.119]

the viscosity of highly viscous liquids or measurements
under high pressure. In routine operation the viscome-
ters are used in a relative manner using a calibration of
the instrument with standard liquids. For a sphere of ra-
dius a, falling through a distance L , the viscosity of the
fluid is given as

µ = 2a2(ρs −ρ)gt

9L
fw , (3.106)

where ρs is the density of the sphere, and t the fall time.
This equation is valid provided the motion is very slow,
the fluid is infinite, incompressible and Newtonian, and
there is no slip between the fluid and the sphere’s sur-
face. Also the ball must fall vertically without rotation.
The correction factor fw accounts for the effect of the
inevitable presence of a wall containing the fluid. It is

Table 3.11 Reference values for the viscosity of noble gases
at a pressure of 0.1 MPa

Viscosity (µPa s)
T (◦C) Helium Neon Argon Krypton Xenon

25 19.86 31.76 22.62 25.39 23.09

100 23.16 37.06 27.32 31.22 28.84

200 27.35 43.47 32.85 38.06 35.91

300 31.28 49.50 37.83 44.28 42.38

400 35.04 55.00 42.35 49.99 48.32

500 38.60 60.19 46.63 55.34 53.84
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Fig. 3.41 Falling-cylinder viscometer developed by Is-
dale [3.124] and Irvine [3.125]

usually obtained by calibration with fluids of known vis-
cosity. If R is the radius of the cylindrical container and
provided a/R and Re are sufficiently small (Re � 1),
Faxen [3.126] has derived theoretically the following
correction factor

fw = 1−2.109
( a

R

)
+2.09

( a

R

)3 −0.95
( a

R

)5
.

(3.107)

To measure the fall time, at atmospheric pressure a glass
cylinder is often employed to contain the fluid be-
cause it allows optical observation of the fall time in
a transparent fluid. Flude and Daborn [3.127] performed
measurements using a laser Doppler effect and attained
a precision of ±0.07% in the time. When the liquid
is opaque, the fall velocity can be measured by vari-
ous techniques for example by recording the inductance
changes in a coil wound on the fall tube owing to the
passage of the ball. For high-pressure measurements
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Table 3.12 Viscosity µ (µPa s) of some n-alkanes in the liquid phase

P (MPa) 273.15 K 298.15 K 323.15 K 348.15 K 373.15 K

n-Pentane C5H12 0.101 286.4 220.3 174.8 141.0 114.3
5 301.1 232.4 185.3 150.5 122.8

10 316.1 244.4 195.6 159.7 130.8
25 361.6 279.9 225.0 184.6 151.6
50 439.8 338.7 271.4 222.1 181.3

n-Hexane C6H14 0.101 384.7 295.7 237.8 196.5 164.5
5 403.8 310.9 251.0 208.6 176.0

10 423.5 326.3 264.1 220.4 187.0
25 483.8 372.8 302.9 254.5 217.5
50 590.4 452.4 367.1 308.8 264.3

n-Heptane C7H16 0.101 530.9 392.5 307.4 249.8 207.6
5 557.9 412.5 323.6 264.0 220.6

10 586.0 433.1 340.1 278.1 233.3
25 673.6 496.0 389.6 319.6 269.7
50 831.7 606.6 474.0 388.2 327.6

n-Octane C8H18 0.101 754.3 531.6 401.9 318.6 260.5
5 795.5 559.9 423.4 336.4 276.1

10 838.5 589.2 445.5 354.4 291.7
25 974.3 680.4 513.0 408.3 337.1
50 1225 844.7 631.4 500.0 411.9

n-Nonane C9H20 0.101 995.5 677.5 498.3 387.1 312.4
5 1052 714.2 524.9 408.2 330.2

10 1112 752.4 552.5 429.8 348.2
25 1298 872.4 637.4 495.0 401.6
50 1649 1092 788.7 607.9 491.1

n-Decane C10H22 0.101 1364 886.6 630.0 477.3 378.2
5 1445 936.9 664.7 503.5 399.6

10 1531 989.4 700.7 530.5 421.3
25 1805 1156 813.0 613.2 486.6
50 2328 1465 1016 758.8 598.2

n-Undecane C11H24 0.101 1738 1098 761.5 565.9 441.8
5 1844 1161 803.8 596.8 466.3

10 1956 1228 847.8 628.7 491.2
25 2318 1439 985.7 727.1 566.7
50 3010 1835 1238 902.3 697.3

n-Dodecane C12H26 0.101 2319 1404 941.2 681.4 521.9
5 2466 1488 994.7 719.1 550.7

10 2622 1576 1051 758.1 580.2
25 3129 1859 1227 879.4 670.2
50 4112 2395 1554 1098 827.8

sapphire optical windows are sometimes set into the
pressure vessel to permit observation of the motion.

Falling-Cylinder Viscometer
An alternative realization of a falling-body viscometer
makes use of a right circular cylinder falling under the
influence of gravity along the axis of a coaxial cylindri-
cal tube. This arrangement has the advantage that it is

possible to secure a low Reynolds number for the fluid
flow by choosing a suitable geometry, or by reducing the
cylinder’s mass by making it hollow.

For a cylinder of radius r1 and length Ls, in a tube
of radius r2, the viscosity is given by [3.124]

µ = (1−ρ/ρs)

A
t , (3.108)
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Table 3.13 Viscosity µ (µPa s) of some alkenes in the liquid phase

P (MPa) 273.15 K 298.15 K 323.15 K 348.15 K 373.15 K

Benzene C6H6 0.101 857.6 593.8 435.4 334.0 265.0

5 897.6 621.1 455.4 349.6 278.0

10 939.5 649.5 476.0 365.6 291.0

25 1072 737.9 539.5 414.0 329.8

50 1314 897.8 651.8 497.5 394.7

Toluene C7H8 0.101 761.7 538.2 408.5 326.6 271.1

5 793.5 560.1 425.2 340.5 283.5

10 826.5 582.8 442.4 354.7 296.0

25 929.9 652.9 494.9 397.3 333.1

50 1117 777.5 586.4 470.2 395.0

Ethylbenzene C8H10 0.101 862.6 614.5 467.6 373.5 308.9

5 900.0 640.8 487.8 390.4 324.0

10 939.0 668.1 508.7 407.7 339.3

25 1062 753.1 573.3 460.5 385.3

50 1286 906.1 687.5 552.4 464.0

o-Xylene C8H10 0.101 1091 749.8 559.8 444.4 369.1

5 1137 780.5 582.5 462.8 385.1

10 1186 812.5 606.1 481.7 401.5

25 1338 912.3 678.9 539.8 451.3

50 1617 1093 808.3 641.3 537.0

m-Xylene C8H10 0.101 772.1 562.0 434.1 350.4 291.9

5 804.9 585.7 452.8 366.2 306.2

10 839.0 610.3 472.1 382.4 320.7

25 946.1 686.8 531.5 431.9 364.4

50 1141 824.3 636.6 518.1 439.1

p-Xylene C8H10 0.101 798.2 583.3 452.1 365.9 305.5

5 831.4 607.4 471.1 382.1 320.2

10 866.0 632.4 490.7 398.7 335.1

25 974.2 709.9 551.1 449.1 379.7

50 1171 848.6 657.4 536.4 455.6

Mesitylene C9H12 0.101 941.2 657.5 494.1 392.1 324.1

5 983.8 686.8 516.3 410.4 340.3

10 1028 717.4 539.3 429.2 356.8

25 1169 813.2 610.9 487.4 407.3

50 1429 987.5 739.6 590.3 495.5

where

A = 2πLsLT

mg
{
ln (r2/r1)− [(

r2
2 −r2

1

)
/

(
r2

2 +r2
1

)]} .

(3.109)

Here, ρ is the density of the liquid and ρs the density
of the material of the cylinder, while Ls is the distance
traveled by the falling body of mass m.

There are many difficulties in a practical instru-
ment, because it is impossible to ensure that the falling
body and its tube are perfectly cylindrical and that

the former falls along the axis of the latter. A num-
ber of different designs have been developed to try to
ensure correct operation that include a wide variety
of shapes for the front face of the falling body itself.
Pins protruding from the falling body perpendicular to
its length have been employed in the past, to ensure
concentricity. However, they were unsuccessful as the
influence of friction between the pins and the wall was
high.

An alternative approach is to design the falling body
as a self-centering device. This was done successfully by
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Table 3.14 Viscosity µ (µPa s) of some n-alcohols in the liquid phase

P (MPa) 273.15 K 298.15 K 323.15 K 348.15 K 373.15 K

Methanol CH4O 0.101 772.2 568.3 408.1 312.3 271.5

5 787.6 581.7 418.7 320.7 278.4

10 803.0 595.0 429.1 328.9 285.1

25 847.5 633.0 458.6 351.6 303.4

50 917.4 691.8 503.2 385.2 330.0

Ethanol C2H6O 0.101 1699 1104 719.5 494.4 380.3

5 1743 1134 739.8 508.4 390.6

10 1787 1164 760.2 522.3 400.7

25 1920 1254 819.5 562.1 429.2

50 2141 1401 914.0 624.1 472.6

1-Propanol C3H8O 0.101 3535 1989 1141 827.2 854.8

5 3653 2062 1185 858.6 885.7

10 3774 2135 1229 890.4 916.6

25 4145 2361 1362 985.1 1007

50 4790 2749 1589 1143 1153

1-Butanol C4H10O 0.101 4503 2524 1382 833 622.1

5 4706 2644 1447 870 647.5

10 4919 2769 1515 909 673.3

25 5587 3160 1726 1026 750.1

50 6812 3874 2104 1231 878.7

1-Pentanol C5H12O 0.101 7203 3393 1706 1046 812.5

5 7608 3581 1795 1094 844.9

10 8037 3780 1887 1144 877.8

25 9418 4415 2178 1297 976.1

50 12057 5614 2713 1567 1141

1-Hexanol C6H14O 0.101 8893 4303 2206 1263 809.3

5 9451 4554 2319 1318 839.3

10 10045 4820 2437 1374 869.7

25 11979 5675 2810 1549 960.2

50 15756 7311 3499 1855 1111

1-Heptanol C7H16O 0.101 14217 5712 2658 1473 946.0

5 15133 6041 2787 1533 978.7

10 16110 6388 2921 1594 1012

25 19301 7506 3345 1782 1110

50 25568 9643 4123 2110 1273

1-Octanol C8H18O 0.101 19606 7145 3240 1811 1182

5 20866 7545 3392 1882 1222

10 22208 7969 3551 1955 1263

25 26598 9330 4050 2179 1385

50 35222 11926 4962 2571 1588

Isdale [3.124], Irvine [3.125], Glen [3.128] and others,
and measurements of the viscosity of hydrocarbons at
very high pressures were reported. The measurements
were performed on a relative basis with an estimated
uncertainty of 2–3% in the final values.

3.4.6 Viscosity Reference Values

The internationally agreed standard for viscosity,
ISO/TR 3666:1998, is the viscosity of water at 20 ◦C and
atmospheric pressure (0.101325 MPa), and its approved
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Table 3.15 Viscosity µ (µPa s) of some refrigerants in the liquid phase

P (MPa) 248.15 K 273.15 K 298.15 K 323.15 K 348.15 K

R22 CHClF2 5 292.1 224.0 173.4 131.8 94.2
10 304.8 236.1 185.8 145.2 111.1
25 341.0 269.0 217.0 175.4 142.3

R32 CH2F2 5 229.5 167.3 124.0 89.4
10 240.1 176.3 132.6 98.6 82.5
25 269.0 199.0 152.2 116.1 112.4

R124 C2HClF4 5 529.2 369.8 274.3 210.8 159.2
10 549.5 389.8 296.3 234.1 180.3
25 610.6 448.2 356.6 292.8 228.2

R125 C2HF5 5 310.2 223.9 161.5 112.2
10 328.6 240.7 178.9 132.8
25 379.3 283.2 217.8 170.6

R134a C2H2F4 5 405.7 295.2 219.4 161.8 114.6
10 430.5 314.5 236.4 178.6 133.7
25 503.6 368.6 280.8 218.3 172.0

R141b C2H3ClF2 5 829.5 577.5 429.8 333.3 265.5
10 858.3 602.2 451.9 353.1 283.9
25 946.8 677.5 518.1 410.5 335.4

R152a C2H4F2 5 337.8 230.9 173.7 134.8 103.3
10 355.5 243.6 185.1 146.8 117.5
25 407.9 279.3 215.4 176.0 147.8

value is

µ = 1.0016 mPa s . (3.110)

This value has an estimated relative uncertainty of
±0.17%. This is based on the value of 1.0019 mPa s
reported by Swindells et al. [3.117] in 1952, which was
also the basis of ISO/TR 3666:1977. The small differ-
ence in value is due to the difference between the ITS-48
and ITS-90 temperature scales.

The temperature dependence of the viscosity of wa-
ter at atmospheric pressure in the temperature range
0.01–100 ◦C, is given by the following recommended
correlation [3.129]

log
µ(θ)

µ(20 ◦C)
= θ

116− θ

×
(

1.2378−1.303 × 10−3θ

+3.06 × 10−6θ2

+ 2.55 × 10−8θ3
)

, (3.111)

where θ = 20− T (◦C). The estimated uncertainty of
(3.111) is better than ±0.1%.

In the case of the viscosity of gases, nitrogen is usu-
ally employed as a standard, since it is readily available
with high purity and is also inexpensive to obtain. The

following value is recommended [3.83] for the viscosity
of nitrogen at 25 ◦C and atmospheric pressure:

µ = (17.710±0.016) µPa s . (3.112)

Recommended values for the viscosity of the noble
gases at a pressure of 0.1 MPa are shown in Table 3.11.
They have been calculated using a combination of ex-
perimental data and available theory and their estimated
uncertainty is ±0.2% in the range 25–200 ◦C, and
±0.4% in the range 200–500 ◦C.

For use at higher pressures, up to 30 MPa, and at
a temperature of 25 ◦C, the viscosity of nitrogen is
represented by the equation [3.83]

µ = 0.17763 × 10−4 +0.86870 × 10−8ρ

+0.14240 × 10−9ρ2 , (3.113)

where µ is measured in Pa s and ρ in kg/m3. Other
secondary viscosity reference fluids are available in the
literature [3.83].

3.4.7 Tables of Viscosity Values

In Tables 3.12–3.16, the viscosity of commonly encoun-
tered fluids is given for use in engineering calculations,
as a function of both temperature and pressure. The val-
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Table 3.16 Viscosity µ (µPa s) of some gases

P (MPa) 273.15 K 298.15 K 323.15 K 348.15 K 373.15 K

Argon Ar 0.101 21.26 22.73 24.14 25.50 26.82

5 22.43 23.73 25.01 26.26 27.49

10 24.32 25.29 26.32 27.39 28.48

Hydrogen H2 0.101 8.33 8.86 9.36 9.85 10.32

5 8.40 8.92 9.42 9.90 10.36

10 8.50 9.00 9.49 9.96 10.42

Nitrogen N2 0.101 16.54 17.62 18.66 19.66 20.62

5 17.46 18.40 20.25 20.25 21.15

10 18.89 19.59 20.34 21.12 21.91

Oxygen O2 0.101 19.12 20.48 21.79 23.05 24.28

5 20.18 21.39 22.58 23.75 24.89

10 21.90 22.80 23.77 24.77 25.78

Carbon monoxide CO 0.101 16.47 17.61 18.70 19.75 20.77

5 17.44 18.43 19.41 20.37 21.32

10 18.99 19.70 20.49 21.30 22.13

Carbon dioxide CO2 0.101 13.96 15.14 16.28 17.38 18.46

5 17.95 18.46 19.21 20.04

10 29.35 23.64 23.16

Sulfur dioxide SO2 0.101 11.87 12.97 14.06 15.15 16.24

Hydrogen sulfide H2S 0.101 11.76 12.86 13.94 15.01

5 17.26

Methane CH4 0.101 10.34 11.14 11.92 12.67 13.39

5 11.49 12.11 12.75 13.39 14.04

10 13.84 13.88 14.17 14.58 15.05

Ethane C2H6 0.101 8.69 9.44 10.17 10.88 11.57

5 13.47 13.26 13.51

10 38.33 24.83 19.37

Propane C3H8 0.101 7.61 8.28 8.93 9.57

ues quoted are therefore not intended to be the best
possible values for the viscosity of a particular fluid but
are intended to be of sufficient accuracy to be useful. The
fluids and the temperature and pressure conditions cho-
sen are the same as chosen for the density and thermal
conductivity in Sects. 3.1 and 3.4.

Values for the liquid viscosity are based on a large
collection of experimental data correlated by a semi-

empirical hard-spheres-based procedure available in the
literature (n-alkanes [3.130], n-alkenes [3.131], n-alco-
hols [3.132], refrigerants [3.133]). The uncertainty of the
quoted liquid viscosity values is much better than ±5%.
Values for the gas-phase viscosity have been obtained
from corresponding-states software [3.37], itself based
upon experiment; it is estimated that the uncertainty is
less than 2%.

3.5 Thermal Conductivity and Thermal Diffusivity

The thermal conductivity is defined by Fourier’s law.
In one group of instruments described in this chap-
ter the use of a time-dependent heating perturbation
is applied to the fluid, and the time dependence
of the temperature in the fluid is measured and

related to the thermal conductivity. In the second
group a continuous and constant heat source estab-
lishes a steady temperature distribution in the fluid
whose measurement again yields the thermal con-
ductivity of the fluid. The instruments have different
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attributes which make them suitable for particular
applications.

The thermal conductivity of a fluid measures its
propensity to dissipate energy, when disturbed from
equilibrium by the imposition of a temperature gradi-
ent. For isotropic fluids the thermal conductivity λ is
defined by Fourier’s law

Q = −λ∇T , (3.114)

where Q is the instantaneous flux of heat, which is the
response of the medium to the instantaneous tempera-
ture gradient. The thermal conductivity depends on the
thermodynamic state of the fluid. Because it is impossi-
ble to measure local fluxes and local gradients, (3.114)
cannot be employed directly to measure the thermal
conductivity of a fluid.

The rate of heat propagation through a fluid is de-
scribed by its thermal diffusivity a defined as

a = λ

ρCp
, (3.115)

where ρ is the fluid density and Cp its isobaric heat ca-
pacity. In some techniques, the thermal conductivity is
obtained indirectly from the measured thermal diffusiv-
ity, provided the density and the isobaric heat capacity
of the fluid are known.

The starting point for the formulation of the work-
ing equations to measure the thermal conductivity of
a fluid is the equation of energy conservation which,
for a Newtonian, viscous, isotropic and incompress-
ible fluid, with temperature-dependent properties, can
be written [3.134]

ρ
dU

dt
= −∇ · Q − P(∇ ·v)−σ : ε , (3.116)

where U is the internal energy, t the time, P the hy-
drostatic pressure, v the hydrodynamic velocity of the
fluid, σ the stress tensor, ρ the density and Q the heat
flux vector. The notation d/dt represents the substantive
derivative [3.134]. On the assumption that the temper-
ature perturbation is small and that a local-equilibrium
thermodynamic state exists, (3.116) can be transformed
to

ρCv
dU

dt
− T

(
αp

kT

) (
−αp + kT

dP

dT

)
dT

dt
= −∇ · Q +φ , (3.117)

where Cv is the isochoric heat capacity, αp the isobaric
expansion coefficient, kT the isothermal compressibility
and φ = σ : ε is the rate of internal energy increase owing

to viscous dissipation. Assuming that kT(dP/dT ) � αp,
(3.117) can be written

ρCp
dT

dt
= −∇ · Q +φ . (3.118)

A general solution of (3.118) is not possible; thus it
is necessary to apply a number of further restrictions
before it can be employed as the basis of determinations
of thermal conductivity. It is further assumed that fluid
movements are avoided, so that v = 0 and consequently
φ = 0. It is therefore necessary to make measurements
of the thermal conductivity in such a way that the effect
of convection is negligible even if it is unavoidable.
Assuming further that the radiative heat flux is rendered
negligible and employing Fourier’s law (3.114) then,
for an isotropic fluid with a temperature-independent
thermal conductivity, density and heat capacity, (3.118)
can be written

ρCp
∂T

∂t
= λ∇2T . (3.119)

Equation (3.119) is the basis for all experimental
methods for the measurement of the thermal conduc-
tivity.

In the last 30 years a variety of experimental methods
have been developed, both for liquid or gaseous phases,
to cover a wide range of thermodynamic states. These
methods, according to the use of (3.119) can be classified
in two main categories:

• Transient or unsteady-state techniques, in which the
full (3.119) is used and the principal measurement
is the temporal history of the fluid temperature,• Steady-state techniques, for which ∂T/∂t = 0, and
(3.119) reduces to λ∇2T = 0, which can be inte-
grated for a given geometry.

3.5.1 Transient Methods
for Thermal Conductivity

The main difficulty in performing accurate measure-
ments of the thermal conductivity of fluids lies in the
realization of two of the conditions above. It should be
possible to isolate the conduction process from other
mechanisms of heat transfer.

The imposition of a temperature gradient in a com-
pressible fluid in the gravitational field of the earth
inevitably creates a state of motion (natural convec-
tion) so that pure conduction in a fluid is very difficult
to achieve. The success of transient techniques for the
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measurement of the thermal conductivity of fluids is
based on the fact that the characteristic time for the ac-
celeration of the fluid by buoyancy forces is much longer
than the propagation time of a temperature wave orig-
inated by a strong and localized temperature gradient.
In this section two transient techniques are described:
the transient hot-wire technique applicable over a wide
range of conditions and an interferometric technique
especially suited to the critical region.

The advantages of the transient hot-wire technique
are that it permits the user to obtain the thermal con-
ductivity by the use of an exact working equation
resulting from a careful mathematical model of the in-
strument as well as to eliminate convective contributions
to the heat transfer from the measurement. The tran-
sient hot-wire technique is an absolute technique and
the instruments based on its principle are considered pri-
mary instruments and are capable of providing the lowest
uncertainty possible at present. The uncertainty of the
measurements has been confirmed by performing meas-
urements in low-density noble gases, for which an exact
molecular theory exists [3.135]. It has been applied suc-
cessfully in most regions of the phase diagram, except
very close to the critical point where the temperature
gradients used are too large to maintain a state suffi-
ciently near equilibrium, owing to large fluctuations in
density and long-range correlations. It is in this particu-
lar region that the interferometric technique is singularly
appropriate because it has the unique advantage that the
nearer the critical point is approached the smaller can be
the applied temperature gradient. Thus, the two transient
techniques are complimentary.

Transient Hot-Wire Technique
A transient thermal conductivity measurement is one
in which a time-dependent perturbation, in the form of
a heat flux, is applied to a fluid initially at equilibrium.
The thermal conductivity is obtained from an appropri-
ate working equation relating the observed response of
the temperature of the fluid to the perturbation. In prin-
ciple, one can devise a wide variety of techniques of this
kind. However, the only geometrical arrangement ap-
plied over a wide range of conditions is one in which
the perturbing heat flux is applied by means of electrical
dissipation in a thin, cylindrical wire as a step function.
In this case the wire is itself used as the thermometer to
monitor the temperature rise of the fluid at its interface.

The temperature rise in the fluid at a distance r from
the wire at a time t, can be defined

∆T (r, t) = T (r, t)− T0 . (3.120)

It can easily be shown [3.136] that for a cylindrical wire
of radius r0, and for small values of the term (r2

0/4at),

∆T (r0, t) = q

4πλ

[
ln

(
4at

r2
0γ

)
+

(
r2

0

4at

)
+ . . .

]
,

(3.121)

where ∆T (r0, t) is the transient temperature rise of the
fluid at the wire surface, λ and a the thermal conductivity
and thermal diffusivity of the fluid, respectively, q the
heat input power per unit length, and γ = 0.577216 is the
Euler–Mascheroni constant. In the ideal model, (3.121)
describes the temperature rise of the wire in contact
with the fluid at its surface. In practice a real instrument
departs from the ideal model in a number of respects
and analytical corrections have been developed [3.136]
for the departure of a practical instrument from the ideal
one. The two major additive corrections to (3.121) that
need to be applied in practice are:

1. The heat capacity correction ∆Thc significant only
at short experimental times [3.137],

∆Thc

= 2q1/2

π2r2
0

∞∫
0

(
1− e−awu2t

)
J1(ur0)

×

[
J0

(√
aw

a
ur0

)
φ(u)−Y0

(√
aw

a
ur0

)
φ(u)

]

×
{

u3
[
φ2(u)+ψ2(u)

]}−1
du , (3.122)

with

φ(u) = λwa1/2 J1(ur0)J0

(√
aw

a
ur0

)

−λa1/2
w J0(ur0)J1

(√
aw

a
ur0

)
, (3.123)

ψ(u) = λwa1/2 J1(ur0)Y0

(√
aw

a
ur0

)

−λa1/2
w J0(ur0)Y1

(√
aw

a
ur0

)
. (3.124)

In these expressions, r0 is the wire radius and the
subscript ‘w’ refers to wire properties. Furthermore,
J0 and J1 denote Bessel functions of first kind, of
order zero and one, respectively, while Y0 and Y1
express Bessel functions of second kind, of order
zero and one.
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2. The outer boundary correction, ∆Tob, significant
only at long experimental times

∆Tob(r0, t)

= q

2πλ
ln

b

r0
+ q

2r0λ

∞∑
n=1

e−aa2
n t

×
J2

0 (ban) [J0(r0an)Y1(r0an)−Y0(r0an)J1(r0an)]

an
[
J2

1 (r0an)− J2
0 (ban)

] ,

(3.125)

where b is radius of the cylindrical fluid enclosure
and αn are the positive roots of the equation

J1(r0x)Y0(bx)−Y1(r0x)J0(bx) = 0 . (3.126)

Healy et al. [3.136] proposed approximate expressions
of (3.122) and (3.125) valid for large values of (4at/r2

0).
These expressions together with (3.121) form a consis-
tent set in order to calculate the thermal conductivity
from the measured temperature rise. The application of
this methodology to liquids and gases at moderate pres-
sures has provided many reliable thermal-conductivity
data over the last two decades. Unfortunately, the analyt-
ical corrections proposed by Healy et al. [3.136] proved
to be inadequate [3.137] for the description of exper-
iments in the gas phase at low densities, where fluids
exhibit exceedingly high thermal-diffusivity values.

To overcome these difficulties, a numerical finite-
element method was proposed by Assael et al. [3.137],
in order to solve the complete set of energy-conservation
equations that describe the heat-transfer experimen-
tal processes. The choice of this particular numerical
method was dictated by the high accuracy the method
exhibits in computational heat transfer problems. The
energy equations to be solved are two coupled partial
differential equations, one for the wire, 0 < r ≥ r0:

(
ρcp

)
w

∂Tw

∂t
= λw∇2Tw − q

πr2
0

, (3.127)

and one for the fluid, r0 ≥ r < ∞:

(
ρcp

) ∂T

∂t
= λ∇2T . (3.128)

On the wire/fluid interface both the temperature and the
heat flux are considered to be continuous. This means
that for r = r0,

λw

(
∂Tw

∂r

)
r=r0

= λ

(
∂T

∂r

)
r=r0

(3.129)

and

Tw (r0, t) = T (r0, t) . (3.130)

This set of equations was solved subject to a suitable
set of initial conditions on a straight wire [3.137]. As
it can be seen from the conditions (3.129) and (3.130),
the problem is one-dimensional with respect to the ra-
dial direction. Assael et al. [3.137] employed a forward
difference (Euler) scheme coupled with a modification
of the Gaussian elimination method (LU decomposition
method). In practice, experimental means are employed
to yield a finite segment of a wire that behaves as if it
were part of an infinite wire. This allows the numer-
ical solution of the differential equations to be used
iteratively to determine the thermal conductivity and dif-
fusivity of the fluid that yields the best match between
the experimental and calculated temperature rise of this
finite segment of wire.

Since the technique was first employed by Stal-
hane and Pyk [3.138] in 1931 to measure the thermal
conductivity of powders, there have been significant
improvements in the practical realization of the tech-
nique. In modern instruments the wire sensor acts both
as the heat source and as a thermometer. Rapid devel-
opment of analogue and digital equipment as well as of
computer-driven data-acquisition systems have meant
that precise measurements of transient electrical sig-
nals can be made quickly. Thus, it has become possible
to measure the resistance change taking place in the
hot wire as a consequence of its temperature rise with
a precision better than 0.1%. Furthermore, instead of
a single wire, two wires identical in all respects except
for length, are employed. This allows a practical and
automatic means of compensating for the finite length
of the wires. For electrically insulating fluids platinum
has usually been employed as the heating wire and
sensing thermometer because of its chemical stability
and resistance/temperature characteristics. In order to
allow measurements of electrically conducting fluids,
tantalum wires are often employed, because tantalum
upon electrolytic oxidation forms tantalum pentoxide
on its surface, which is an electrical insulator. Together
with a more systematic approach to the theory it has
been possible to provide instruments with an uncertainty
of ±0.5%.

The theory assumes that the heat source is straight
and stationary. To ensure that this is true a mecha-
nism must be used to take up the thermal expansion
of the wire as it undergoes transient heating. At the
same time the expansion of the wire and its supports
must not impose undue stresses during temperature
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change of the whole assembly. The simplest means of
doing this is illustrated in Fig. 3.42 where the wires
are tensioned by small weights. In Fig. 3.43 the wires
are pretensioned between fixed supports but the sup-
ports of the wires and the wires themselves are made
of the same material, tantalum; so that the wires are
kept under constant tension even when the temperature
changes.

To register with high accuracy the resistance change
of the wire, and thus its temperature change, an elec-
tronic type of bridge is usually employed. Recent
bridges [3.140] allow measurements from 20 µs after
the initiation of heating, resulting in a very large num-
ber of measurements within 1 s. At the same time they
are characterized by a temperature resolution of 5 mK
and a time resolution of 1 µs.

The transient hot-wire technique is unique when
compared with other techniques of measuring thermal
conductivity. The mathematical model of the technique
permits a detailed assessment of its precision and verifies
the absence of modes of heat transfer other than con-
duction. The technique has successfully been employed
over a very wide range of pressures and temperatures,
but not near the critical point for the reasons already
discussed. Transient hot-wire instruments have been
successfully operated in many laboratories (in Lon-
don [3.141], Thessaloniki [3.137, 139], Lisbon [3.142],
Tokyo [3.143], Boulder [3.144] and other places). In the
best instruments, the uncertainty of the technique is in
the region of ±0.3 to ±0.5%, although measurements
performed prior to the development of the complete the-
ory in 1976 are expected to have uncertainties larger
than ±0.5%.

Interferometric Technique
At the critical point the thermal conductivity of the fluid
diverges, its thermal conductivity becomes infinite and
its thermal diffusivity becomes zero. This divergence
is a consequence of the ever-increasing length scale of
correlations among the molecules as the critical point
is approached, and its effect extends over a wide re-
gion around the critical point. In this region a number
of special techniques for the study of thermal conduc-
tivity have been developed and we describe just one that
has had the distinction of having been operated on the
Earth [3.145] and in space [3.146].

The principle of the technique is quite straightfor-
ward. An infinitesimally thin, uniform source of heat q
is located at the junction of a two semi-infinite materials,
a solid and a fluid. Initiation of the heat flux at time t = 0
causes the temperature of the fluid to rise according to
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Fig. 3.42 Wires with weights arrangement developed by
Assael et al. [3.139]

the equation

∆T (z, t) = 2q

λ

√
at ierfc

( z

2

√
at

)
, (3.131)

where z is the distance from the heat source (z = 0)
measured along the normal to it into the fluid domain,
and ierfc denotes the integrated complementary error
function. The temperature distribution in the fluid at any
instant can be determined by means of the effect of the
temperature change on the density and refractive index n
of the fluid using optical interferometry. In the simplest
approach an interference pattern is produced in the fluid
at a uniform temperature in a plane perpendicular to the
heater surface by the superposition of two laser beams.
Any subsequent nonuniformity of temperature induced
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Fig. 3.43 Wires and support made of same material design
developed by Jawad [3.147]

by the transient heating perturbs the fringe pattern in
a manner described by (3.131) and |dn/dT |. Thus, in
principle, measurements of the perturbation can be used
to determine the thermal diffusivity of the fluid a. In the
work of Becker and Grigull [3.145] this was achieved
by means of holographic interferometry. The fringes in
the cell (Fig. 3.44) at a state of uniform temperature are
produced as a hologram and consequently subtracted
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Fig. 3.44 Interferometric cell developed by Becker and
Grigull [3.145]

from those produced in any other state, at any instant
during the transient heating.

Using the theory of ideal interferometry, in which
all light paths are assumed straight, the fringe order k is
given by

k = 2
√

at B ierfc
( z

2

√
at

)
, (3.132)

where

B = ql

λΛ

∣∣∣∣ ∂n

∂T

∣∣∣∣ (3.133)

for light of wavelength Λ, when l is the distance through
the fluid over which the temperature disturbance takes
place.

Thus, measurements of the position of fringes of
various orders at any instant of time, following the initi-
ation of transient heating, can be used to determine the
thermal diffusivity a by nonlinear regression, and con-
sequently the thermal conductivity from a knowledge of
the fluid density and heat capacity.

The main advantage of the technique is that it is pos-
sible to employ temperature rises of the order of 10−4 K
because the sensitivity of the technique increases as the
critical point is approached. As with any measurement
near the critical point a high degree of overall temper-
ature stability and uniformity of the order of 10−6 K is
essential and the nature of the cell required lends itself
to the fulfillment of these conditions.

3.5.2 Steady-State Methods
for Thermal Conductivity

In the case of the steady-state methods employed for
the measurement of the thermal conductivity, (3.119)
reduces to

λ∇2T = 0 . (3.134)

In these methods, the heat flux necessary to main-
tain a constant temperature difference is measured. The
two surfaces are usually formed by concentric cylin-
ders or by two parallel plates. All such instruments are
characterized by quite simple working equations and
the difficulties in their use arise from the painstak-
ing alignment of the two surfaces, because defects in
their alignment make a first-order contribution to the
instrument’s uncertainty. Attention must also be given
to the avoidance of significant contributions from other
modes of heat transfer such as natural convection or
radiation.
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Coaxial-Cylinder Technique
The coaxial-cylinder technique is a steady-state method
that measures the heat exchange by conduction between
two concentric cylindrical surfaces separated by a small
gap filled with the fluid sample, each of these surfaces
being maintained at constant temperature. The technique
has an intermediate position between the transient hot-
wire and parallel-plate techniques as far as the secondary
heat flows are concerned. The instrumentation is some-
what more complex than that for the hot-wire cells, but
less complex than that for the parallel-plate apparatus.
The reduction of heat losses from non-isothermal sample
boundaries is easier to realize with a system involving
heat transmission between a heat source and a concen-
tric heat sink separated by the fluid than with a planar
cell. However, special care must be taken in the per-
fect machining of the two cylindrical surfaces, which
must be highly polished. The same care must be taken
in the centering of the two coaxial cylinders. The heat
transfer arising from convection in the coaxial-cylinder
system can be made negligible, except near the criti-
cal point of the fluid, by employing a small annular gap
(typically 0.2–0.3 mm). Furthermore, the radiant heat
transfer can be strongly reduced by choosing a low-
emissivity material from which to make the cylinders.
Silver is ideal for this purpose since it has a low emis-
sivity, a high thermal conductivity and a good resistance
to chemical agents. One of the main advantages of the
coaxial-cylinder technique is its versatility. Almost any
fluid can be investigated, whether an electrical conductor
or not.

The basic principle of the technique assumes a thin
layer of a homogeneous fluid with a uniform thermal
conductivity λ enclosed between two coaxial cylinders
of infinite length. The external radius of the inner cylin-
der is r1, and the internal radius of the external cylinder
is r2. We assume that the heat flux is uniformly gener-
ated in the inner cylinder and propagates radially through
the test sample to the heat sink (the outer cylinder), in
steady-state conditions. Then, the temperatures of the
external surface of the inner cylinder and of the internal
surface of the outer cylinder will be respectively T1 and
T2. Employing (3.134), the amount of heat transferred
by conduction per unit time and per unit length through
the fluid layer is given by

Q = 2πλ

log (r2/r1)
(T1 − T2) . (3.135)

The thermal conductivity is obtained from the above
equation by measuring the heat flux Q passing through
the test sample and the temperature difference (T1 −

T2). The value of the thermal conductivity determined
corresponds to that at the average temperature (T1 +
T2)/2.

In practice, the length of the cylinders is not infi-
nite and the heat transfer through their ends must be
considered.

In the classic coaxial-cylinder cell (Fig. 3.45), the
end pieces (guard cylinders) are maintained at exactly
same temperature as the inner cylinder emitter, so that
all of the heat is transferred radially and (3.135) can be
applied to obtain the thermal conductivity of the fluid.

Alternatively, if the end pieces are maintained at
the same temperature as the inner surface of the outer
cylinder, the thermal conductivity of the fluid is obtained
from the equation

Q = λ

C
(T1 − T2) , (3.136)

where Q is the total amount of heat generated in the
emitter and C represents a geometric instrument con-
stant. The constant C depends just upon the geometry
of the coaxial cylinders. It can therefore be determined
from measurements of the heat flux when the annular
gap is filled with a standard fluid of known thermal con-
ductivity. Alternatively, it is possible to use the fact that
there is a complete analogy between the equations of
heat conduction and electrostatics so that a measurement
of the electrical capacitance of the coaxial cylinder sys-
tem when filled with a fluid of known dielectric constant
also yields the constant C [3.148, 149].

In the measurement of the thermal conductivity,
a number of corrections have to be made to obtain the
thermal conductivity of the test specimen. Some of these
corrections are related to the special features of the appa-
ratus, for instance, the eccentricity between the internal
and external cylinders; some are due to the fluid under
investigation such as the heat transfer by convection.
Others are related both to the instrument design and the
fluid, the heat transfer by radiation including the absorp-
tion of radiation, or the temperature jumps between the
walls of the cell and the test gas.

The coaxial-cylinder instrument shown in Fig. 3.45
[3.148, 149] incorporates two coaxial cylinders made
completely out of silver. This instrument was used to
measure several thermal conductivity of several samples,
namely carbon dioxide, steam, ammonia, ethene, ethane,
propane and many others [3.150] with special emphasis
on the critical region. The large vertical extent of the
cylinders (see dimensions in Fig. 3.45) means that the
critical point can only be realized at one horizontal plane
but measurements in the vicinity of the critical region
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Fig. 3.45 Coaxial-cylinder cell developed by LeNein-
dre [3.148] and Tufeu [3.149]

were obtained successfully. The estimated uncertainty
of these data is better than ±2% [3.150].

Coaxial-cylinder instruments have been success-
fully operated and reported in literature by many
investigators, such as Vargaftik and Smirnova [3.152],
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Fig. 3.46 Parallel-plate instrument (after [3.151])

Vines [3.153], Ziebland and Burton [3.154], Yata
et al. [3.155], Bailey and Kellner [3.156] and others.

Parallel-Plate Technique
In the parallel-plate technique for measuring the thermal
conductivity, the fluid under investigation is confined be-
tween two horizontal plates. The system is heated from
above so that the upper plate has a higher temperature
than the lower plate. It follows from (3.134), that, if the
upper and lower plates are maintained at constant, uni-
form temperatures T1 and T2 respectively, the heat flow
across an area A and a fluid layer of thickness d, is

Q = λA
(T1 − T2)

d
. (3.137)

In this solution it is assumed that the thermal conductiv-
ity of the fluid is constant, that the plate dimensions are
infinite and that the heat flux is in one dimension.

In practice the upper plate is surrounded by a guard
plate, sufficiently close to the upper plate to eliminate the
distortion of the temperature profile at the edges of the
latter. Equation (3.137) shows that it is very important to
measure accurately the area A and the thickness d apart
from the temperature difference since they all enter the
working equation in first order. The plates must also
be perfectly parallel in order that the working (3.137)
can be used. Since none of these conditions can ever be
satisfied exactly, there are several corrections that must
be considered. In practice, the guard plate is separated
from the upper plate by a distance, smaller than the
thickness d. Thus, A is not the area of the upper plate
but an effective area for heat transfer.

Generally, the heat transfer between the plates is not
only effected by conduction through the fluid layer, but
also by convection and radiation. In addition, parasitic
heat losses between the plates need to be taken into
account. The effects of convection can be made negligi-
bly small (although not eliminated) by taking great care
to align the plates in a horizontal position and by using
a small distance d. In most cases a correction is necessary
for radiative heat transfer between the plates. To reduce
the radiation correction the plate surfaces must have
low emissivities. For this purpose the plate surfaces are
polished and protected against oxidation, sometimes by
coating with nickel, chrome, silver or silver dioxide. Fi-
nally, a correction has to be made for the reference state
of the fluid usually taken as the average of the lower-
and upper-plate temperatures. A description of all these
corrections can be found in the literature [3.151, 157].

The parallel-plate instrument shown in Fig. 3.46
[3.151] was employed in the measurement of the ther-
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mal conductivity of carbon dioxide in the liquid and
dense gas states, with special attention to the critical
region. In general, the parallel-plate technique makes
it possible to perform accurate measurements of the
thermal conductivity of fluids over a wide range of
temperatures and pressures. The technique has success-
fully been employed from liquid-helium temperatures
(Ubbink and de Haas [3.158], Grenier [3.159], Roder
and Diller [3.157]) up to 500 ◦C (Nuttall and Gin-
nings [3.160], Amirkhanov and Adamov [3.161]) and
at a pressure from a few mmHg up to 250 MPa (Michels
et al. [3.162]). The classical work of Sengers and his
coworkers [3.162] in the critical region demonstrated
what can be achieved with this instrument given great
care.

3.5.3 Light-Scattering Methods
for Thermal Diffusivity

In the last 30 years there have been rapid developments
in the application of optical techniques to the meas-
urement of some of the transport properties of fluids.
These techniques are applicable to a wide range of op-
tically transparent fluids and have proved particularly
valuable near the critical point of a fluid because, unlike
the classic methods of measurement, it is not neces-
sary to impose a macroscopic gradient on the fluid. In
this section we consider two optical techniques. The
bulk of our description of these techniques is asso-
ciated with the underlying theory of the experiments
because the physical aspects of the instrumentation are
generally commercially available optical components
assembled for particular purposes. First the application
of photon-correlation spectroscopy to the measurement
of the thermal diffusivity of fluids will be described. Sec-
ondly, a more recent optical technique that makes use
of forced-Rayleigh scattering of light to determine the
thermal diffusivity of fluids, such as molten salts, under
extreme conditions, will be presented.

Photon-Correlation Spectroscopy Technique
A fluid in thermodynamic equilibrium is continuously
subject to fluctuations of its thermodynamic variables.
The fluctuations, although they are microscopic, are
described statistically by the same equations that gov-
ern the corresponding macroscopic processes [3.163].
For example, the lifetime of entropy fluctuations is
determined by the thermal diffusivity a of the bulk
fluid. Light passing through a fluid is scattered by mi-
croscopic fluctuations of the local dielectric constant
brought about by local fluctuations of the thermody-

namic variables. The spectrum of the light scattered by
such fluctuations has three peaks, namely the Rayleigh
line and a symmetric pair of Brillouin lines. The
Rayleigh line is the result of quasi-elastic scattering
from fluid elements with entropy fluctuations and, in
mixtures, also contains a component scattered from con-
centration fluctuations. Photon-correlation spectroscopy
(dynamic light-scattering spectroscopy or light-beating
spectroscopy), which operates in the time domain, is
a high-resolution technique for measuring the widths of
each of the lines of this scattered spectrum.

Use of photon-correlation spectroscopy to measure
the thermal diffusivity and mass diffusion coefficient
has the advantage that the measurements are made on
a sample in thermal equilibrium so that no corrections
for macroscopic temperature gradients are needed, and
convective effects can be avoided. Because the transport
information derives from sampling microscopic thermo-
dynamic fluctuations with a laser beam, the total volume
of material needed to make a measurement can be very
small. Correspondingly, the time needed to reach equi-
librium can be kept small, and experiment run times
can also be short depending on the desired accuracy
of the measurement. The technique is intrinsically ab-
solute in nature, not requiring extensive calibration. It
is, of course, particularly well suited to measurements
of the thermal diffusivity in the critical region when
fluctuations become more important. The major lim-
itation of the technique has been inability to achieve
a measurement uncertainty better than 5–10%, although
recently [3.164] the uncertainty of the technique has
improved to about 2.5%.

We now briefly examine the details of the theory of
the method since they reveal what measurements may
most easily be made. Incident light with wavenumber
k (in the scattering medium) is scattered at an angle θ

by fluctuations with a wavenumber q according to the
Bragg condition

q = 2k sin

(
θ

2

)
. (3.138)

The width of the scattered Rayleigh peak is determined
by the diffusivities associated with thermal fluctua-
tions in the fluid. For the entropy fluctuations this is
the thermal diffusivity a whereas for the concentration
fluctuations, the determining diffusivity is the mutual
diffusion coefficient D. In the time domain one works
with the autocorrelation function of the electric field E
of the scattered light, defined by

G(1)(τ) = 〈
E∗(τ)E(0)

〉
. (3.139)

Part
B

3
.5



142 Part B Measurement of Primary Quantities

In a one-component fluid G(1)(τ) decays exponentially
with delay time τ , as

G(1)(τ) = As e−aq2τ , (3.140)

where q is the wavenumber defined in (3.138), where the
exponential contains the thermal diffusivity. Evidently,
if it were possible to observe the autocorrelation function
the thermal diffusivity could be evaluated directly. In ac-
tual photon-correlation experiments, the detectors of the
scattered light are photomultiplier tubes, which respond
to the intensity of the scattered light and not simply
to its electric vector. Thus, when the scattered signal
is processed by a digital correlator, it is the intensity
correlation function

G(2)(τ) = 〈I(τ)I(0)〉 (3.141)

that is obtained. The intensity is simply related to the
electric field vector because

I(t) = |E(t)|2 = E∗(t)E(t) , (3.142)

in which the electric field E(t) is a linear combination
of all contributions to the scattered electric field at the
detector. In all but the simplest of cases, the number
of terms which arises from expanding (3.141) is very
large. Special circumstances are employed to render the
number of terms tractable.

In heterodyne measurements [3.165–167], which are
most suitable for small intensities, the scattered light is
mixed coherently with a static light source at the incident
wavelength, usually light reflected from a window of
the sample cell. In this case, the static field is added
to the scattered fields at the detector, and (3.141) for
a single-component fluid becomes

G(2)(τ) = (I0 + Is)
2 + I2

s e−2τ/τs +2I0 Is e−τ/τs ,

(3.143)

where I0 is the intensity of the static scattering, Is is the
intensity due to entropy fluctuations and τs is the decay
time associated with the entropy fluctuations related to
the thermal diffusivity a

a = 1

(q2τs)
. (3.144)

Fitting the heterodyne equations to extract the decay
time τs, it is usual to arrange the condition I0 	 Is so
that (3.143) simplifies to

G(2)(τ) = (I0 + Is)
2 +2I0 Is e−τ/τs . (3.145)

Equation (3.145) forms the basis of the usual photon-
correlation spectrometer measurements.

A typical arrangement is shown in Fig. 3.47. The
heterodyne arrangement is ensured by using a strong ref-
erence beam generated by a beam splitter which is then
combined with the Rayleigh-scattered light at the photo-
multiplier. Here, q is obtained from the equation [3.164]

q = 4πn

λ0
sin

(
θs

2

)
, (3.146)

where n is the sample refractive index, λ0 the laser wave-
length in vacuum, and θs the angle between the direction
of observation and the incident laser beam within the
sample (Fig. 3.47). With these values taken from ex-
periment, and with the decay time extracted from the
measured correlation function, the thermal diffusivity a
can be calculated from (3.144).

Recent publications [3.164] on the measurement
of the thermal conductivity of toluene with a photon-
correlation spectrometer showed an uncertainty of
±2.5%, mostly attributed to errors in the angle measure-
ment and the photon statistics, which can be improved
by greater duration of the experiments.

Forced Rayleigh-Scattering Technique
The forced Rayleigh-scattering technique was initi-
ated independently by Eichler et al. [3.168] and Pohl
et al. [3.169] in 1973. Eichler and coworkers devel-
oped it for the determination of the thermal diffusivity
of organic liquids and ruby crystals. More recently Na-
gasaka and Nagashima and their coworkers [3.170,171]
reworked the theory of forced Rayleigh scattering and
applied it to the measurement of the thermal diffusiv-
ity of organic liquids, liquid crystals and, particularly,
high-temperature molten salts (above 1000 ◦C).

The term forced Rayleigh scattering was created by
analogy with spontaneous Rayleigh scattering, which
we saw above is based on the scattering effect of statisti-
cal thermodynamic fluctuations in a fluid. If such weak
and random fluctuations are replaced by stronger and
more coherent excitations from a laser-induced grating,
the forced scattering (or diffraction) of a probing beam
becomes much stronger and coherent. The technique has
also been called laser-induced dynamic grating.

The principle of the forced Rayleigh scattering
method, is illustrated by reference to Fig. 3.48.

Two pulsed, high-power laser beams of equal wave-
length and equal intensity intersect in an absorbing
sample at an angle θ. They generate an optical in-
terference fringe pattern whose intensity distribution
is spatially sinusoidal. Following partial absorption of
the laser light, this interference pattern induces a cor-
responding temperature distribution in the x-direction
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Fig. 3.47 Schematic diagram of a photon-correlation spec-
trometer

of the sample. After the heating process, the excited
temperature distribution decays exponentially owing to
heat conduction and the decay of the distribution can
be examined by using a non-absorbed probe-laser beam
which is diffracted by the grating created by the influ-
ence of the temperature distribution on the refractive
index of the fluid. It is assumed that heat conduction
takes place in the x-direction only and this is permis-
sible if the following conditions are satisfied. First the
grating period Λ should be much smaller than the sam-
ple thickness d. Secondly, Λ should be sufficiently small
compared with the light absorption length and finally
Λ should be small compared with the diameter of the
heated area. The simplest mathematical description of
forced Rayleigh scattering is then provided by rewriting
the thermal balance equation (3.119) in one dimension
as

∂T

∂t
= a

∂2T

∂x2
(3.147)

subject to the initial spatially periodic temperature distri-
bution produced by the interference of two laser beams.

T = T0 +∆T0(1+ cos qx) at t = 0 . (3.148)

Here, T is the temperature, t the elapsed time after
heating, a the thermal diffusivity of the sample, T0 the
initial temperature, ∆T0 the initial spatial temperature
amplitude, and q = 2π/Λ is the wavenumber of the in-
terference pattern. The relation between the angle of
inclination of the heating beams and the grating period
is

Λ = λh

2 sin (θ/2)
≈ λh

θ
(θ ≈ 0) , (3.149)
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Fig. 3.48 Principle of forced Rayleigh scattering

where λh is the wavelength of the heating beam. The
solution to (3.147) for the temperature distribution is

T (x, t) = T0 +∆T0

[
1+ cos (qx) exp

(−t

τ

)]
,

(3.150)

which demonstrates that the spatial temperature am-
plitude decays exponentially with the relaxation time
characteristic of heat conduction τ

τ =
(

1

a

) (
Λ

2π

)2

. (3.151)

As indicated earlier, the spatially periodic temperature
distribution produces a corresponding refractive-index
distribution. In turn this acts as an optical phase grating
for a low-power probing laser beam of a wavelength λp
not absorbed in the sample. According to the theory of
diffraction, if the sample is thin enough, the first-order
diffracted laser beam intensity I1 is proportional to the
square of the maximum phase variation of the grating φ

so that for a probing laser beam of intensity Ip

I1 = Ipφ
2

4
. (3.152)

Table 3.17 Reference values for the thermal conductivity
of noble gases at a pressure of 0.1 MPa

Thermal conductivity (mWm−1K−1)
T (◦C) Helium Neon Argon Krypton Xenon

25 155.3 49.24 17.67 9.451 5.482

100 181.1 57.84 21.36 11.63 6.852

200 213.9 67.43 25.59 14.18 8.534

300 244.7 76.79 29.60 16.50 10.07

400 274.1 85.34 33.14 18.64 11.49

500 302.0 93.39 36.50 20.64 12.81
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Table 3.18 Thermal conductivity λ (mW m−1K−1) of some n-alkanes in the liquid phase

P (MPa) 273.15 K 298.15 K 323.15 K 348.15 K 373.15 K

n-Pentane C5H12 0.101 125.1 113.7 102.4 91.3 80.5

5 127.8 116.8 105.9 95.3 84.6

10 130.4 119.7 109.2 98.8 88.3

25 137.6 127.6 117.8 107.9 97.3

50 147.8 138.6 129.4 119.7 108.8

n-Hexane C6H14 0.101 128.4 118.9 109.8 100.9 92.1

5 130.7 121.5 112.8 104.4 96.1

10 133.0 124.1 115.7 107.6 99.6

25 139.3 131.0 123.3 116.0 108.7

50 148.4 140.9 134.0 127.4 120.6

n-Heptane C7H16 0.101 132.8 123.5 114.5 105.9 97.4

5 134.9 125.8 117.2 108.9 100.9

10 137.0 128.2 119.8 111.8 104.1

25 142.9 134.5 126.8 119.4 112.4

50 151.4 143.7 136.6 130.0 123.5

n-Octane C8H18 0.101 137.8 128.4 119.5 110.8 102.4

5 139.8 130.7 122.0 113.6 105.5

10 141.8 132.9 124.4 116.3 108.5

25 147.4 139.0 131.0 123.6 116.4

50 155.7 147.8 140.5 133.7 127.1

n-Nonane C9H20 0.101 140.1 130.9 122.1 113.5 105.1

5 142.1 133.1 124.4 116.1 108.0

10 144.0 135.1 126.7 118.6 110.8

25 149.3 140.9 132.9 125.3 118.1

50 157.3 149.4 142.0 135.0 128.3

n-Decane C10H22 0.101 143.5 134.2 125.3 116.6 108.3

5 145.4 136.3 127.5 119.1 111.0

10 147.2 138.3 129.7 121.5 113.6

25 152.5 143.9 135.7 128.0 120.7

50 160.4 152.2 144.5 137.4 130.6

n-Undecane C11H24 0.101 145.0 135.9 127.0 118.3 110.0

5 146.8 137.8 129.1 120.7 112.5

10 148.6 139.8 131.2 123.0 115.0

25 153.7 145.2 137.0 129.2 121.7

50 161.4 153.3 145.5 138.2 131.2

n-Dodecane C12H26 0.101 147.9 138.6 129.5 120.7 112.2

5 149.7 140.5 131.6 123.0 114.7

10 151.5 142.4 133.6 125.2 117.1

25 156.5 147.7 139.3 131.2 123.5

50 164.1 155.7 147.6 140.0 132.8

The interrelation between φ and the maximum temper-
ature amplitude of (3.150) can be expressed by

φ =
(

2πd

λp

) (
∂n

∂T

)
∆T0 exp

(−t

τ

)
, (3.153)

where n is the refractive index of the sample. Substitut-
ing (3.153) into (3.152), the thermal diffusivity of the
sample can be obtained from the following equation

a = −
(

1

2

) (
Λ

2π

)2 (
d log I1

dt

)
. (3.154)
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Table 3.19 Thermal conductivity λ (mW m−1K−1) of some alkenes in the liquid phase

P (MPa) 273.15 K 298.15 K 323.15 K 348.15 K 373.15 K

Benzene C6H6 0.101 153.1 143.7 134.0 124.1 114.2

5 154.9 145.6 136.1 126.5 116.9

10 156.6 147.5 138.2 128.8 119.4

25 161.5 152.9 144.1 135.2 126.4

50 169.0 160.9 152.7 144.5 136.2

Toluene C7H8 0.101 138.5 130.0 121.9 114.4 107.2

5 139.9 131.6 123.8 116.4 109.6

10 141.4 133.3 125.6 118.4 111.8

25 145.7 137.9 130.6 124.0 118.0

50 152.1 144.8 138.1 132.0 126.7

Ethylbenzene C8H10 0.101 135.6 128.6 121.7 115.1 108.6

5 137.0 130.2 123.5 117.1 110.9

10 138.4 131.7 125.3 119.1 113.2

25 142.5 136.1 130.1 124.5 119.2

50 148.6 142.8 137.4 132.4 127.9

o-Xylene C8H10 0.101 142.1 134.6 127.6 121.2 115.3

5 143.5 136.0 129.2 123.0 117.4

10 144.8 137.5 130.8 124.8 119.4

25 148.7 141.7 135.4 129.7 124.8

50 154.6 148.0 142.2 137.1 132.8

m-Xylene C8H10 0.101 133.9 127.5 121.2 115.0 108.9

5 135.3 129.1 123.0 117.0 111.2

10 136.7 130.6 124.7 118.9 113.4

25 140.7 135.0 129.6 124.4 119.5

50 146.8 141.6 136.8 132.3 128.2

p-Xylene C8H10 0.101 132.2 125.7 119.4 113.1 107.0

5 133.6 127.3 121.1 115.1 109.3

10 135.0 128.8 122.8 117.0 111.5

25 138.9 133.1 127.6 122.4 117.5

50 144.9 139.7 134.7 130.2 126.0

Mesitylene C9H12 0.101 135.6 129.1 122.9 117.1 111.5

5 136.9 130.6 124.6 119.0 113.7

10 138.2 132.1 126.2 120.8 115.8

25 142.1 136.3 130.9 126.0 121.6

50 148.0 142.6 137.8 133.5 129.9

Accordingly, the thermal diffusivity is determined by
measuring the time dependence of I1 and the grating
period Λ. The optical instrumentation required to carry
through these measurements is standard and does not
merit description here.

The actual experimental conditions may differ from
those described. There are several secondary effects
that must be considered, for example in many fluids
it is necessary to add a dye to the fluid so that it
absorbs sufficient light and this may affect the prop-

erty measured. It is also necessary to consider the fact
that the heat conduction process is not in practice one-
dimensional; these and other effects have been dealt with
in the literature [3.172]. By comparison with conven-
tional techniques for the measurement of the thermal
diffusivity, the forced Rayleigh technique has several
following advantages: it is contact-free, it is charac-
terized by the short duration of the measurement time
(< 1 ms), small temperature rise (< 0.1 K), small sample
volume (< 10 mm3), and it is applicable to anisotropic
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Table 3.20 Thermal conductivity λ (mW m−1K−1) of some n-alcohols in the liquid phase

P (MPa) 273.15 K 298.15 K 323.15 K 348.15 K 373.15 K

Methanol CH4O 0.101 206.1 203.8 192.5 176.2 158.2

5 208.7 206.9 195.9 179.5 161.2

10 211.3 210.0 199.1 182.8 164.0

25 218.5 218.4 208.2 191.6 171.8

50 229.2 230.7 221.1 204.1 182.6

Ethanol C2H6O 0.101 174.9 166.7 156.5 145.0 132.6

5 177.0 169.0 159.0 147.5 135.0

10 179.1 171.3 161.5 150.0 137.3

25 185.0 177.8 168.3 156.8 143.6

50 193.8 187.4 178.3 166.7 152.7

1-Propanol C3H8O 0.101 159.1 156.1 150.2 141.5 130.5

5 160.9 158.2 152.5 144.1 133.1

10 162.8 160.3 154.9 146.6 135.5

25 167.9 166.2 161.4 153.4 142.2

50 175.7 175.0 171.0 163.3 151.9

1-Butanol C4H10O 0.101 159.3 155.0 147.0 135.9 122.5

1-Pentanol C5H12O 0.101 163.5 155.1 143.1 128.6 112.8

1-Hexanol C6H14O 0.101 167.5 154.5 139.1 122.5 106.0

materials. The technique has successfully been applied
to the measurement of the thermal diffusivity of molten
salts [3.173] although its potential is greater.

3.5.4 Thermal Conductivity Reference
Values

Toluene and water have been proposed as primary
standard reference liquids. Under the auspices of the
International Union of Pure and Applied Chemistry (IU-
PAC) Subcommittee on Transport Properties, Nieto de
Castro et al. [3.174] recommended the following values
as primary data:

for toluene at 298.15 K and 0.1 MPa

λ = (0.1311±0.0013) Wm−1 K−1 (3.155)

and for water at 298.15 K and 0.1 MPa

λ = (0.6067±0.0061) Wm−1 K−1 . (3.156)

The temperature dependence of the thermal conductivity
is represented by the following equations, where T∗ =
(T/298.15 K), and λ∗ = [λ(T )/λ(298.15 K)]:
for toluene

λ∗ = 1.68182−0.682022T∗ (3.157)

at 230 K ≤ T ≤ 360 K,

λ∗ = 1.45210−0.224229T∗ −0.225873T∗2

(3.158)

at 189 K ≤ T ≤ 360 K,
for water

λ∗ = −1.26523+3.70483T∗ −1.43955T∗2

(3.159)

for 274 K ≤ T ≤ 360 K.

The maximum deviation of the primary experimental
data from (3.157) is 1.3%, from (3.158) is 1.5% and from
(3.159) is 1.1%. Other secondary thermal conductivity
reference liquids are available in the literature [3.167].

Recommended values for the thermal conductivity
of the noble gases are shown in Table 3.17. They have
been calculated using available theory and the corre-
sponding viscosity data and their estimated uncertainty
is ±0.3% in the range 25–200 ◦C, and ±0.5% in the
range 200–500 ◦C.

For higher pressures up to 30 MPa and at a tempera-
ture of 27.5 ◦C, the thermal conductivity of argon is
represented by the equation [3.175]

λ = 17.751+21.402 × 10−3ρ+27.247 × 10−6ρ2 ,

(3.160)
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Table 3.21 Thermal conductivity λ (mW m−1K−1) of some refrigerants in the liquid phase

P (MPa) 248.15 K 273.15 K 298.15 K 323.15 K 348.15 K

R22 CHClF2 5 111.6 98.8 86.8 76.2 65.8
10 114.2 102.0 90.9 81.7 74.7
25 120.8 110.1 100.5 93.3 89.8

R32 CH2F2 5 171.8 147.7 127.4 112.0
10 176.8 153.3 134.0 121.2 129.0
25 189.7 166.7 148.6 137.9 165.6

R124 C2HClF4 5 87.5 78.9 70.5 63.6 57.6
10 88.7 80.9 73.5 67.9 62.8
25 92.2 86.0 81.0 77.5 73.3

R125 C2HF5 5 81.7 75.2 66.6 55.6
10 84.4 78.9 71.7 63.4
25 91.3 87.6 82.4 76.6

R134a C2H2F4 5 104.9 94.6 84.6 74.1 62.3
10 107.6 97.8 88.6 79.3 69.9
25 114.8 105.9 98.0 90.6 83.8

R141b C2H3ClF2 5 108.5 101.1 93.6 86.0 78.2
10 109.5 102.5 95.5 88.3 81.1
25 112.4 106.5 100.6 94.4 88.2

R152a C2H4F2 5 127.8 116.8 106.1 94.6 81.3
10 130.7 120.3 110.4 100.3 89.3
25 138.2 129.0 120.9 113.0 104.9

where λ is measured in mW/(m K) and ρ in kg/m3.
Other secondary thermal conductivity reference fluids
are available in the literature [3.167].

3.5.5 Tables of Thermal Conductivity Values

In Tables 3.18–3.22, the thermal conductivity of com-
monly encountered fluids is given for engineering
purposes as a function of temperature and pressure. The
fluids and the temperature and pressure conditions cho-
sen are the same for the density and viscosity in Sects. 3.1
and 3.4.

Values for the liquid thermal conductivity are based
on a large collection of experimental data correlated by

a semi-empirical hard-spheres-based procedure avail-
able in the literature (n-alkanes [3.176], n-alkenes
[3.177], n-alcohols [3.178], refrigerants [3.179]). The
uncertainty of the quoted liquid thermal conductiv-
ity values is much better than ±5%. Values for the
gas-phase thermal conductivity have been obtained
from corresponding-states software [3.37] based on
experimental data and they have an estimated uncer-
tainty better than 2%. It is important to stress that
the values listed for individual materials are not in-
tended to be the best known values; they are, rather,
a set of values that are consistent with those listed
for other properties with sufficient accuracy to be
useful.

3.6 Diffusion

The diffusion processes in liquids and gases are char-
acterized by vastly different time scales; the process in
liquids being some 105 times slower than in low-density
gases. As a result, the types of instruments used to meas-
ure the diffusion coefficient differ dramatically between
the two phases. We describe just some of the most suc-
cessful among the many techniques that have been used

in each phase concentrating upon optical techniques for
liquids. We consider also two classical techniques for
the gas phase. Just one technique is common to both gas
and liquid phases, that relying upon the phenomena of
Taylor dispersion.

The diffusion coefficient of a mixture of two or more
chemical species is a measure of its tendency to produce
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Table 3.22 Thermal conductivity λ (mW m−1K−1) of some gases

P (MPa) 273.15 K 298.15 K 323.15 K 348.15 K 373.15 K

Argon Ar 0.101 16.64 17.79 18.89 19.95 20.98

5 19.47 20.34 21.21 22.08 22.95

10 22.68 23.13 23.69 24.32 25.00

Hydrogen H2 0.101 172.46 183.61 194.36 204.70 214.80

5 177.70 188.50 198.80 208.90 218.80

10 182.00 193.20 203.20 213.05 222.60

Nitrogen N2 0.101 24.90 26.58 28.21 29.80 31.34

5 28.25 29.60 32.34 32.34 33.70

10 31.84 32.76 33.80 34.92 36.07

Oxygen O2 0.101 25.54 27.52 29.46 31.36 33.23

5 28.83 30.49 32.16 33.84 35.52

10 32.57 33.74 35.05 36.44 37.90

Carbon monoxide CO 0.101 24.89 26.71 28.48 30.20 31.89

5 28.43 29.89 31.38 32.87 34.36

10 32.28 33.26 34.39 35.50 36.87

Carbon dioxide CO2 0.101 16.25 18.09 19.94 21.80 23.65

5 26.30 25.96 26.76 27.93

10 55.01 37.48 34.66

Sulfur dioxide SO2 0.101 9.84 11.00 12.20 13.43 14.68

Hydrogen sulfide H2S 0.101 16.39 18.08 19.81 21.55

5 29.22

Methane CH4 0.101 32.75 36.08 39.51 43.04 46.68

5 38.90 41.46 44.34 47.44 50.74

10 47.69 48.26 50.06 52.44 55.21

Ethane C2H6 0.101 19.65 22.55 25.62 28.86 32.26

5 38.31 36.89 38.49

10 75.26 61.66 52.42

Propane C3H8 0.101 15.49 18.03 20.75 23.62

entropy when it is disturbed from equilibrium by the
imposition of gradient of the chemical potential of each
species. As for the other transport coefficients, the diffu-
sion coefficient is defined as the proportionality constant
between a flux and a driving force. However, unlike the
other transport processes, the diffusive flux of molecules
has been defined with respect to a number of different
frames of reference, and the driving force has also been
expressed in a variety of alternative ways. There are
therefore a variety of different diffusion coefficients in
use. In this work, we choose the definition that leads to
a phenomenological equation most closely related to the
equation which describes the diffusion process in an ex-
periment. We also confine ourselves to binary systems
for simplicity. Consequently, we employ the gradient of
molar density of a species for the driving force and con-

sider molar fluxes of the two species, J1 and J2, with
respect to a volume-fixed frame of reference defined by

v1 J1 +v2 J2 = 0 , (3.161)

where v1 and v2 are the partial molar volumes of the
components of the mixture. Fick’s law gives the molar
fluxes, at any instant relative to this frame of reference
as

J1 = −D12

(
∂C1

∂x

)
t

, (3.162)

J2 = −D21

(
∂C2

∂x

)
t

, (3.163)

where C1 and C2 are the molar densities of the two com-
ponents. The coefficients D12 and D21 are the diffusion
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coefficients for the mixture, and from the definition

v1C1 +v2C2 = 1 , (3.164)

it follows that

D12 = D21 . (3.165)

When (∂Ci/∂x)t changes with time, but the diffusion
coefficient does not vary with concentration during the
experiment, then

∂Ci

∂t
= D12

(
∂2Ci

∂x2

)
, i = 1, 2 . (3.166)

The diffusion coefficient defined in this way is known
also as the interdiffusion coefficient or mutual diffusion
coefficient, and depends parametrically on the thermo-
dynamic state of the fluid, which is characterized by the
variables (T , P, Ci ) or (T , ρ, Ci ). In this section it will
be referred to simply as the diffusion coefficient.

The diffusion coefficient, as defined above, must be
distinguished from

1. the self-diffusion coefficient that refers to the dif-
fusional motion in a single-component fluid, and
is usually studied by techniques such as nuclear
magnetic resonance, and

2. the intra-diffusion coefficient, or tracer diffusion co-
efficient, which characterizes the diffusion of each of
the components i, j in an otherwise uniform mixture
of two or more components where the component
under study, i, is chemically identical with compo-
nent j but can be distinguished by some label such
as its isotopic form.

The work presented here is divided into two main
sections: the first dealing with measurements in the li-
quid phase, and the second with measurements in the
gas phase because for this property there are some
substantial differences in techniques between the two
phases.

3.6.1 Diffusion in Liquids

In this section, techniques that are able to yield meas-
urements of the diffusion coefficients in liquids with
a small uncertainty on a reasonable timescale (≤ 1 d),
will be discussed. Thus, the methods which will be
presented are the Diaphragm-cell technique, the Taylor-
dispersion technique, and the Rayleigh and Gouy
interferometric techniques. Other techniques can yield
higher accuracy but take extreme precautions or a larger

investment of time than can be justified for routine
use.

Diaphragm-Cell Technique
The diaphragm cell is the simplest method of determin-
ing diffusion coefficients with an uncertainty of about
1%. It is very versatile and has been used for a wide
range of temperatures and pressures. The essential fea-
tures of a typical cell, of the type first employed by
Stokes [3.180], are shown in Fig. 3.49. Each bulb con-
tains a glass stirrer, always in contact with the glass
diaphragm. The stirrers are rotated by means of external
rotating magnets. For a measurement, of the diffusion
coefficient of potassium chloride in aqueous solution, for
example, the salt solution is placed in the bottom bulb
and water in the top. After a certain period, samples are
taken from both bulbs for analysis.

In the case of the diaphragm cell, the diffusion
process is assumed to be one-dimensional but the char-
acteristics of the diaphragm are not known so that
application of (3.166) and its solution are heuristic. If an
analysis of the compositions of the two samples in the
top and bottom bulbs is conducted after a diffusion time
t then the diffusion coefficient D12 is obtained from the
set of equations [3.181, 182]

D12 =
(

1

βt

)
log

[(
C0

B −C0
T

)
(1−λ/6)

(CB −CT)

]
,

(3.167)

with

β =
(

A

l

) (
1

VB
+ 1

VT

) (
1− λ

6

)
, (3.168)

and

λ = 2VD

(VB + VT)
. (3.169)

Here, the subscripts ‘B’ and ‘T’ denote the bottom and
top compartments, while the superscript 0 denotes initial
concentrations. A is the effective area of the membrane,
l its effective length and VD the liquid content in the
membrane (note that A and l are not simply related, as
the effective area of the membrane could be the same for
a whole range of membranes while their length could be
increased). Excellent measurements with this technique
were carried out by Woolf and Tilley [3.183] on aqueous
solutions of potassium chloride.

Taylor-Dispersion Technique
The Taylor-dispersion technique originated by Sir Geof-
frey Taylor in 1953 [3.184], provides a means whereby
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rapid measurements of diffusion coefficients can be
made with moderate accuracy over a wide range of
conditions. The method is a dynamic chromatographic
technique that has few of the limitations of the other
techniques of measuring diffusion coefficients.

In an idealized Taylor-dispersion experiment a nar-
row pulse of solute is injected near the axis into a long
uniform tube of length L and radius R, in which solvent
is flowing in a slow, laminar manner. As the pulse is car-
ried through the tube, it spreads owing to the combined
action of convection in the axial direction and molecu-
lar diffusion in the radial direction. The peak center, or
the maximum, continues to move at the mean velocity
of the laminar profile. Eventually, the peak elutes from
the end of the long tube, where a suitable detector is em-
ployed to measure the radially averaged concentration
profile as a function of time.

In cylindrical coordinates, the continuity equation
for a species in terms of its molar concentration C, at
fixed point (r, x) is written

D12

(
∂2C

∂r2
+ 1

r

∂C

∂r
+ ∂2C

∂x2

)
= u(r)

∂C

∂x
+ ∂C

∂t
,

(3.170)

where u(r) is the axial velocity of the flow relative to lab-
oratory coordinates. The diffusion coefficient is assumed
constant which is valid if the concentration gradient is
small. It is further assumed that there is no chemical re-
action occurring, the fluid density is constant, and that
the fluid is in laminar flow with the familiar parabolic
velocity profile for Newtonian fluids,

u(r) = 2u

[
1−

( r

R

)2
]

, (3.171)
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Fig. 3.49 Diaphragm cell (after [3.180])

where u is the mean flow velocity. It is, however, more
convenient to measure the concentration distribution rel-
ative to an axial coordinate z, which moves with the
mean speed of flow u. Then the velocity in this frame of
reference is

υ(r) = u(r)−u = u

[
1−2

( r

R

)2
]

. (3.172)

Taylor showed that, by choosing appropriate exper-
imental conditions, the effects of longitudinal diffusion
upon the injected pulse may be neglected [3.185].
Therefore, neglecting the axial dispersion term and con-
sidering convection across a plane which moves at u,
(3.167) reduces to

∂2C

∂r2
+ 1

r

∂C

∂r
= R2

D12

∂C

∂t
+ R2u

D12

[
1−2

( r

R

)2
]

∂C

∂z
,

(3.173)

where z = x −ut. Although (3.173) cannot be solved
directly for the concentration perturbation, it is readily
solved for the spatial moments of the distribution C at
a particular time. In particular, Aris [3.186] has shown
that, after a sufficient time, the concentration pertur-
bation averaged over a cross section of the tube has
a Gaussian distribution along the length of the tube. The
variance of the distribution is related to the dimensions
of the tube, the velocity of the flow, and the diffusion co-
efficient of the fluid mixture. Indeed, this result formed
the basis of Taylor’s original measurements of diffusion
coefficients.

It is experimentally more convenient to monitor the
cross-section-averaged concentration distribution at an
axial position z = L as a function of time [3.187, 188].
In this case, the first moment of the temporal distribution
tid is given by [3.187]

tid = L

u
(1+2ζ) , (3.174)

whereas the variance of the temporal distribution, which
is no longer Gaussian, is [3.187]

σ2
id =

(
L

u

)2 (
8ζ2 +2ζ

)
, (3.175)

where

ζ = u R2

48D12L
, (3.176)

and the subscript ‘id’ denotes the ideal experimental
arrangement. These equations lead to a final working
equation for the evaluation of the diffusion coefficient
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from the measured temporal moments of the distribution
in the form [3.187]

D12 = R2

24tid

(
1+ 4σ2

id

t2
id

)1/2

+3

(
1+ 4σ2

id

t2
id

)1/2

+ 2σ2
id

t2
id

−1

. (3.177)

The principle of Taylor dispersion was first applied
to the measurement of diffusion coefficients in gases
by Giddings et al. [3.189]. However, the uncertainty of
the measurements was very large. The development of
very sensitive refractive-index detectors for liquid chro-
matography encouraged the development of the method,
for use in liquids by Ouano [3.190] and Wakeham
et al. [3.191,192]. Figure 3.50 shows the instrument em-
ployed by Alizadeh and Wakeham [3.187, 188] for their
measurements of the diffusion coefficients of n-alkanes
in the temperature range 20–80 ◦C. They showed that
diffusion coefficients with an uncertainty of ±1% may
be obtained in an experiment lasting only one hour.

Rayleigh Interferometric Technique
The most precise methods for measuring interdiffusion
coefficient in two- or three-component liquid systems
have been the Rayleigh and Gouy optical interferomet-
ric methods. Both have been employed to obtain values
of binary diffusion coefficients with a typical uncer-
tainty of about 0.2% and a precision of 0.1–0.2%. There
are many possible practical arrangements that can be
used in experiments, but most workers have chosen
the free-diffusion case described below. Whatever ar-
rangement is adopted the process of diffusion produces
a time-dependent distribution of refractive index or re-
fractive index gradient in the mixing fluid that enables
the diffusion process to be followed.

Free diffusion in a vertical column starts from an
infinite sharp boundary between two uniform solu-
tions of two species of different concentrations. The
free-diffusion experiment is stopped before concentra-
tion changes are observed at the top or bottom of the
cell [3.193]. The initial concentrations of the two solu-
tions are normally chosen to be only slightly different
so that the diffusion coefficient can be taken as a con-
stant. In such a case, the closed-form solutions of the
diffusion equation given below can be used. The diffu-
sion (3.166), in a binary system with a constant diffusion
coefficient, can be rewritten for one solute as

∂C

∂t
= D12

(
∂2C

∂Z2

)
. (3.178)
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Fig. 3.50 Schematic diagram of a Taylor-dispersion instru-
ment employed for diffusion coefficient measurements in
liquids developed by Alizadeh et al. [3.187] and Wake-
ham [3.188]

Here C is the molar concentration, t the time elapsed
from the start of the experiment, and Z the vertical
distance from the starting boundary (positive in the
direction of higher density and, usually, higher concen-
tration). The solution to this equation for free diffusion
is

C = C + ∆C

2
erf

(
y√
D

)
, (3.179)

where

y = Z

2
√

t
, (3.180)

C = CT +CB

2
, (3.181)

and

∆C = CB −CT . (3.182)

In the above equations the subscripts ‘B’ and ‘T’ refer
to the initial bottom and top solutions, respectively.

In the usual case, the refractive index n can be
described by a linear function of the solute concentration

n = n + R(C −C) , (3.183)

so that for free diffusion in a binary system

n = n + ∆n

2
erf

(
y√
D12

)
, (3.184)
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where ∆n is the difference of refractive index of the
top and bottom solutions initially. This distribution of
refractive index can be revealed by Rayleigh interfer-
ometry.

A schematic view of a Rayleigh interferometer for
the measurement of the diffusion coefficient in liq-
uids [3.194] is shown in Fig. 3.51. A monochromatic
light source from a vertical slit is focused onto the cam-
era plane by the main lens. The light passes through
two parallel slits one in front of each of the two chan-
nels of a Rayleigh-type diffusion cell, and then through
a horizontal cylindrical lens.If both channels contain flu-
ids of the same refractive index, the interference pattern
observed is determined solely by the superposition of
the diffraction envelopes generated by the two slits. In
this way, equally spaced fringes are produced within the
diffraction envelope known as reference fringes. The
zeroth-order fringe, which corresponds to equal optical
path lengths for the two beams is located at the center of
the envelope. If the refractive index of one channel is in-
creased the interference fringes that are conjugate to the
channel move sideways within the diffraction envelope
and the displacement of any given fringe is proportional
to the refractive index difference between the two chan-
nels. If, to this system one adds a horizontal, cylindrical
lens so that the cells are imaged on the camera plane
and also makes one channel a cell in which free diffu-
sion takes place according to (3.179), accompanied by
the refractive index changes of (3.184), then different
vertical positions in the cell are subject to different re-
fractive index changes so that the resulting fringe pattern
will be that shown in Fig. 3.52. In this case, each fringe
is shifted by an amount depending upon the extent of
diffusion at each vertical position from a corresponding
reference fringe. The reference fringes can themselves
be obtained continuously from interference in regions of
both cells where there is no diffusive perturbation such
as the ends of the cell.

Measurements of the fringe shifts at a vertical posi-
tion Z with respect to the initial boundary position may
be used to determine the diffusion coefficient. If j de-
notes the j-th minimum in the fringe pattern about its
center and J is the total number of fringes which cor-
responds to the refractive-index difference between the
two initial solutions in the diffusion cell, then (3.184)
leads to the result

(2 j − J) = erf(y∗) . (3.185)

Now

y∗ = Z

2
√

D12t
(3.186)
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Fig. 3.51 Schematic view of Rayleigh interferome-
ter [3.194]

so that, if (3.185) and (3.186) are written for both the
j-th and (J − j)-th fringes, it is possible to obtain the
result that for an interferogram photographed at time t:

D12 =
[
(X J− j − X j )/2y∗]2

4M2t
, (3.187)

where X j andX J− j are the fringe shifts for the j-th and
J − j-th minima in the pattern on the photographic plate,
y∗ is the appropriate solution of (3.185) and M is the
magnification factor of the optical system.

The Rayleigh interferometric technique has been
employed for a number of precise measure-
ments of diffusion coefficient by Sundelöf [3.195],
Longsworth [3.196] and Svensson [3.197] among oth-
ers. In recent years, laser light sources have considerably
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Fig. 3.52 Schematic diagram of Rayleigh interference
fringes
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simplified the design of Rayleigh interferometers and
its modifications [3.198, 199]. This is because the co-
herence of the laser light removes the need for careful
matching of the optical paths of the two beams which is
necessary to observe interference fringes with ordinary
light sources. In general, the Rayleigh interferometric
technique is a very good method for measuring diffu-
sion coefficients at moderately low (0.01 molar) to high
concentrations. It is also characterized by a simple run
procedure and theory, but it has seldom been applied
far from ambient temperature because of the difficul-
ties of ensuring stable optical paths in large temperature
gradients.

Gouy Interferometric Technique
As already discussed, fringe positions in Rayleigh pat-
terns yield the refractive index at corresponding levels
of the diffusion cell. Fringe positions in Gouy fringe
patterns are a Fourier transform of the refractive-index
gradient ∂n/∂z and are related to the symmetrical posi-
tions of the gradient about the position of the maximum
gradient.

Figure 3.53 illustrates a common configuration for
a Gouy apparatus. The instrument is physically simpler
than the Rayleigh one shown in Fig. 3.51; there is only
one lens, and besides the cell, the only other optical
components are the lamp, filter and slit. However, the
theory of the device is more complicated.

In the Gouy system any light ray that passes through
the diffusion-affected region of the free-diffusion cell
will be deflected away from its point of intersection with
the photographic plate in the absence of diffusion. The
amount of this displacement is, to a first-order approx-
imation, proportional to the refractive index gradient at
the position in the diffusion cell at the height where the
light crosses the cell. Interference fringes then arise at
the photographic plate because rays that follow paths
through different parts of the diffusion cell may have the
same point of intersection with the photographic plate.

A set of Gouy [3.200] fringe patterns is illustrated
in Fig. 3.54 together with a set of Rayleigh reference
fringes. The Rayleigh fringes are formed by using light
passing through regions of the diffusion cell undis-
turbed by diffusion and they are used to determine the
position of the undeviated image of the slit on the pho-
tographic plate. Here Y0, Y1, . . . , Y j are the distances
from the undeviated slit image to the outermost fringe
minimum ( j = 0), next outer minimum ( j = 1), etc. The
distance Ct is the maximum Y -position that light would
reach according to ray optical theory [3.201]. Equations
for the analysis of Gouy interferometric fringe patterns

9���	�*���

&�""�����
�	��

�����	
����

*	�� 4��	��
����	

 ��,

Fig. 3.53 Schematic view of Gouy interferometer (af-
ter [3.200])

to determine binary diffusion coefficients were derived
independently by Kegeles and Gosting [3.201] and Coul-
son et al. [3.202]. According to Kegeles and Gosting, the
positions of fringe minima Y j are related to a parameter
z j by

Y j = Ct exp
(
−z2

j

)
. (3.188)

The parameters z j may be evaluated from the equations

f (z j ) = erf(z j )−
(

2
z j√
π

)
exp

(
−z2

j

)
, (3.189)

f (z j ) = ( j + Z j )

J
. (3.190)

Here Z j is a quantity for fringe j, which is calculated for
fringe minima from wave optics [3.203]; it approaches
3/4 for large j. The binary diffusion coefficient is related
to Ct by

D12 = (Jλb)2

4πC2
t t

, (3.191)

where b is the optical distance from the center of the cell
to the camera plane.

:	"	�	��	
"���)	�


���������"
���	�����	�
��������)	

:	"	�	��	
"���)	�

$���
"���)	�

�� �� �0 ��

Fig. 3.54 Schematic diagram of Gouy interference fringes
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Gouy interferometry has been the most widely used
technique for the study of diffusion in liquids. Many
careful experiments can be found in literature [3.201,
203]. As with most interferometric techniques there have
been few applications far from ambient conditions.

3.6.2 Diffusion in Gases

The study of diffusion in gases began in 1863 with
Graham [3.205], who was not only a pioneer in the
field but also one its most ingenious experimentalists.
Indeed, his experiments were performed even before the
formulation of Fick’s law. Since his work, numerous at-
tempts have been made to devise new methods and to
improve existing methods of measurement. A survey
given by Marrero and Mason [3.206] summarizes the
most important developments until that date and a more
recent monograph by Dunlop et al. [3.207] provides
a comprehensive review of experimental techniques.

The purpose of this section is to discuss widely used
and accurate methods rather than to give an extensive
overview of all the available techniques. As in the pre-
vious section on diffusion in liquids, the attention is
focused only on the measurement of the mutual diffusion
coefficient in binary systems.

Closed-Tube Technique
The closed-tube technique originally developed
by Graham [3.205] in 1863 was employed by
Loschmidt [3.208] to determine the diffusion coefficient
for 10 gases in the temperature range 252–293 K. This
type of instrument has therefore become known as the
Loschmidt cell. In Fig. 3.55, a schematic diagram of
a high-pressure Loschmidt cell employed by Shankland
and Dunlop [3.204] is shown. The cell was constructed
in two antisymmetric halves joined about a central pivot.
The cell could be operated at pressures up to 2 MPa with-
out leakage. At the start of an experiment the two halves
of the cell were filled with different pure gases to the
same total pressure. After thermal equilibrium was at-
tained, the diffusion process was begun by rotating the
upper half-cell about the central pivot to bring the two
sections into coincidence.

Assuming that the diffusion coefficient D12 is in-
dependent of the mixture composition, for a total tube
length L , the solution of (3.166) is [3.209, 210]

C1(z, t) =
∞∑

n=0

An cos
(nπz

L

)
exp

(
−n2π2 D12t

L2

)
,

(3.192)

where the coefficients An depend on the initial concen-
trations

A0 = b

L
C1B +

(
L −b

L

)
C1T (3.193)

and for n ≥ 1,

An =
[−2(C1T −C2B)

nπ

]
sin

(
nπb

L

)
. (3.194)

In these equations, b is the position of the boundary
between the two cells, and

C1(z, 0) = C1T , b ≤ z ≤ L ,

C1(z, 0) = C1B , 0 ≤ z ≤ b . (3.195)

There are two different ways in which this ba-
sic solution may be employed for the measurement of
the diffusion coefficient. In the first method the con-
centrations are measured at two planes normal to the
longitudinal axis of the cells which are equidistant from
the initial boundary. Then, all of the even terms in the
summation of (3.192) disappear. Further simplifications
can be made if the distance of the detection planes from
the initial boundary is chosen to be L/3 because then the
equation – truncated to include just the first term with
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Fig. 3.55 High-pressure Loschmidt cell developed by
Shankland and Dunlop [3.204]
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negligible error – becomes

∆C1(t) = 2A1 cos
(π

6

)
exp

(
−π2 D12t

L2

)
(3.196)

and the diffusion coefficient can be determined from
measurements of ∆C1 as a function of time by
a least-squares regression technique. In this case the
measurements of concentrations at the selected planes
can be done by a variety of in situ means that have in-
cluded interferometric means and thermal conductivity
sensors.

In an alternative method of using the Loschmidt cell,
the diffusion process is stopped after a time tm before
mixing is complete [3.210]. If the initial boundary is
formed at z = b = L/2, and the two halves of the cell can
be isolated from one another after the time tm (Fig. 3.55),
the average concentration in each half of the cell can
be measured. If the average concentration of species 1
in the upper half of the cell at time tm is denoted by
〈C1T〉 and that in the lower half of the cell by 〈C1B〉
these two quantities can be evaluated by averaging the
concentration distribution of (3.192) over the length of
each half-cell at time tm, so that

〈C1T〉−〈C1B〉
C1T −C1B

= 8

π2

∞∑
n=0

exp
[−(2n +1)2π2 D12tm/L2

]
(2n +1)2 , (3.197)

which enables D12 to be determined from measurements
of 〈C1T〉, 〈C1B〉, tm and L . This equation can further
be simplified by the proper choice of time tm [3.210].
The method of composition analysis in this type of in-
strument can be any means that has adequate precision
for the gaseous systems under study, including mass
spectrometry.

In the first approach, the exact nature of the initial
experimental conditions do not influence the evaluation
of the diffusion coefficient from ∆C1(t) as a function of
t. This approach depends on the time interval between
concentration measurements but not on the absolute time
at which these measurements are made. On the other
hand, the second method depends upon the measured
time from the start of the diffusion process, as well as
upon the initial concentrations in the two halves of the
cell prior to a measurement.

Two-Bulb Technique
The two-bulb technique is the most widely used
method for determining the diffusion coefficients of
gases [3.211]. The basic arrangement for a two-bulb

cell consists of two chambers of relatively large volume
joined by a small-bore, small-volume diffusion tube. Ini-
tially, the two chambers are filled with fluid mixtures of
different composition at the same pressure which are al-
lowed to approach a uniform composition by means of
diffusion through the tube. In an ideal model of this type
of instrument, it is assumed that the diffusion coeffi-
cient of the gas mixture is independent of composition,
the gas mixtures are ideal, so that there is no volume
change upon mixing or heat of mixing, and the transient
temperature rises due to Dufour effects are insignifi-
cant [3.181]. It is also assumed that the concentration
gradient is confined to the connecting tube whereas the
composition within each bulb remains uniform at all
times. In addition, the pressure is assumed to be uniform
throughout the cell, so that viscous effects are negligible,
and high enough to minimize free-molecular (Knudsen)
diffusion [3.211].

Following these assumptions, (3.166) can be
solved [3.181] to produce the working equation

C1T(t)−C1B(t) = [C1T(0)−C1B(0)] exp

(−t

τ

)
,

(3.198)

where

τ =
[(

1− Vc

3(VB + VT)

)
AD12

L

(
1

VB
+ 1

VT

)]−1

.

(3.199)

In the above equations, the subscripts ‘B’ and ‘T’ refer
to the bottom and top cell volumes, Vc the volume of
the connecting tube of cross-sectional area A and length
L . Therefore the diffusion coefficient can be obtained
from measurements of the difference between the con-
centrations of one species in the top and bottom bulbs as
a function of time, together with the dimensions of the
diffusion cell.

The two-bulb cell shown in Fig. 3.56 was employed
by van Heijningen et al. [3.212] for the measure-
ment of the diffusion coefficients of monatomic gas
mixtures in the temperature range 65–300 K. The esti-
mated uncertainty of the measurements was ±0.5%. To
monitor the concentration changes they employed ther-
mistors, in the same way as Yabsley and Dunlop [3.211]
in their measurements of the diffusion coefficient of
helium–argon and helium–oxygen mixtures near room
temperature. Taylor and Cain [3.213] monitored the
composition changes by withdrawing samples of gas
for mass spectrometric analysis at specific time intervals
during the diffusion process. Their estimated uncertainty
was ±2%.
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Taylor-Dispersion Technique
The Taylor-dispersion technique described in the case
of diffusion in liquids has also been applied to the meas-
urement of the diffusion of gases. The principles of the
application of the technique to gases are identical to
those for liquids so that no new description is necessary
here. However, it is necessary to point out one important
difference between the application of the theory of the
method to gases and liquids which derives from the fact
that in the dilute gas phase the diffusion coefficient is ap-
proximately 105 times larger than in the liquid phase. As
a consequence the principal contribution to the disper-
sion of a pulse of solute gas in gas-phase measurements
is the direct molecular diffusion in the axial direction
and not the Taylor-dispersion contribution arising from
radial diffusion.

For the same reason the dimensions of the diffu-
sion tubes employed for measurements in the dilute gas
phase [3.214] are quite different from those employed in
the liquid phase. Generally, a diffusion tube with a length
of a few meters and a diameter of a few millimeters
is employed for measurements in the dilute gas state.
When combined with the low viscosity of the gas this
means that it is very difficult to satisfy all of the con-
ditions [3.210] necessary for absolute measurements.
Thus, although the technique yields a gas-phase diffu-
sion coefficient within a period of 15 min, and is readily
applied over a wide range of temperature, the uncertainty
of the results has generally been modest [3.210].

More recently the same technique has been applied
to measure the diffusion coefficients of gases at elevated
pressure with particular emphasis on the supercritical
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Fig. 3.56 Two-bulb cell of van Heijningen et al. [3.212]

Table 3.23 Integral diffusion coefficients for aqueous
potassium chloride solutions at 25 ◦C

C1 D12(C1) × 109 C1 D12(C1) × 109

(mol dm−3) (m2s−1) (mol dm−3) (m2s−1)

0.001 1.973 0.060 1.890

0.002 1.966 0.070 1.886

0.003 1.961 0.080 1.882

0.004 1.956 0.090 1.878

0.005 1.953 0.100 1.874

0.006 1.949 0.200 1.857

0.007 1.947 0.300 1.850

0.008 1.944 0.400 1.848

0.009 1.941 0.500 1.848

0.010 1.939 0.600 1.849

0.020 1.923 0.700 1.850

0.030 1.911 0.800 1.852

0.040 1.903 0.900 1.855

0.050 1.896 1.000 1.858

state [3.215, 216]. Under these conditions the diffusion
coefficient of the system is much closer to that char-
acteristic of the liquid phase so that the conditions of
the theory are more easily satisfied and the apparatus is
essentially identical to that employed for liquids. The
Taylor-dispersion technique is particularly suitable for
high-pressure applications because the element to be
pressurized is simply a cylindrical-section tube and be-
cause the time required for a diffusion measurement can
be retained within reasonable bounds (about one hour)
without a loss of uncertainty [3.215, 216].

3.6.3 Diffusion Reference Values

The interdiffusion coefficient of aqueous solutions of
potassium chloride is recommended as the reference
standard [3.181] for the liquid phase. The values given in

Table 3.24 Calibration data for gas-phase diffusion coeffi-
cients at a pressure of 0.101325 MPa

System D12(0) × 105 a1 a2

m2s−1

He–Ar 7.344 0.0846 1.4825

He–N2 7.067 0.0676 1.4883

He–O2 7.469 0.0564 1.1270

He–CO2 6.029 0.0905 2.3952

N2–Ar 2.034 0.0041 0.0
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Table 3.25 Diffusion coefficient D12 (×10−9m2s−1) of some hydrocarbons in supercritical CO2

299.15 K 299.15 K 303.15 K 305.65 K 308.15 K

9.0 MPa 10.5 MPa 10.5 MPa 10.5 MPa 10.5 MPa

n-Pentane C5H12 13.7 13.0 14.1 15.7 17.6

n-Hexane C6H14 13.7 13.0 14.0 15.4 17.6

n-Heptane C7H16 13.4 12.6 14.0 15.4 17.1

n-Octane C8H18 13.2 12.4 13.5 15.2 17.1

n-Nonane C9H20 12.9 12.1 13.3 14.9 16.7

n-Decane C10H22 12.5 11.8 13.0 14.6 16.1

n-Undecane C11H24 12.2 11.5 12.7 14.5 16.1

n-Dodecane C12H26 11.3 11.0 12.0 13.9 15.7

n-Tetradecane C14H30 9.53 9.41 10.9 12.4 14.1

Acetone CH3COCH3 14.3 14.2 15.2 16.2 17.6

Benzene C6H6 14.3 14.0 15.0 15.8 17.4

Table 3.26 Diffusion coefficient D12 (×10−9m2s−1) of some organic solutes in n-hexane

213.2 K 233.2 K 253.2 K 273.2 K 299.2 K 313.2 K 333.2 K

Benzene 1.21 1.80 2.57 3.43 4.70 5.53 6.96

o-Difluorobenzene 1.10 1.60 2.41 3.35 4.46 5.26 6.61

p-Difluorobenzene 1.10 1.72 2.49 3.36 4.63 5.42 6.62

1,2,4-Trifluorobenzene 1.18 1.72 2.33 3.20 4.40 5.20 6.34

1,2,3,5-Tetrafluorobenzene 1.05 1.67 2.27 3.34 4.40 4.95 6.48

1,2,4,5-Tetrafluorobenzene 1.05 1.68 2.22 3.16 4.40 5.17 6.20

Pentafluorobenzene 1.06 1.70 2.26 2.98 4.00 4.83 5.95

Hexafluorobenzene 1.01 1.62 2.16 2.84 4.05 4.62 5.81

Octafluorobenzene 0.88 1.40 1.83 2.47 3.50 4.07 4.98

Table 3.23 are the integral diffusion coefficient defined
as

D12(C1) = 1

C1

C1∫
0

D12 dC1 , (3.200)

where D12 is the true differential diffusion coefficient
and C1 is the concentration of species 1 in one of the
two chambers of a diaphragm cell [3.217]. The values
in Table 3.23 have been derived from the data of Woolf
and Tilley [3.183].

For gas mixtures recommended values of the dif-
fusion coefficients of five mixtures at 300 K and
0.101325 MPa can be calculated from

D12 = D12(0)

(
1+ a1x2

1+a2x2

)
. (3.201)

Here, x2 represents the mole fraction of the heavier com-
ponent and values of D12(0), a1 and a2 are listed in

Table 3.24. Equation (3.201) represents the experimental
data by Dunlop et al. [3.218]; the estimated uncertainty
of these data is about ±0.1%.

Temperature dependencies of diffusion coefficients
in the range 50–1000 K are given by Kestin et al. [3.219].

3.6.4 Tables of Diffusion Coefficient Values

In Tables 3.25–3.27, the interdiffusion coefficient for
some commonly encountered systems is given for en-

Table 3.27 Diffusion coefficient D12 (×10−9m2s−1) of
some organic solutes in toluene

299.2 K 323.2 K 348.2 K

n-Hexane 2.50 3.21

n-Decane 1.84 2.52 3.22

n-Tetradecane 1.46 1.98 2.61
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gineering purposes as a function of temperature and
pressure. The data in Table 3.25 have been obtained
by the Taylor dispersion technique with an estimated

uncertainty of 3% [3.220]. Measurements presented in
Tables 3.26 and 3.27 have an estimated uncertainty of
2.5% [3.221].

3.7 Electric and Magnetic Parameters of Liquids and Gases

This section describes measurements of the dielec-
tric constant and electrical conductivity of fluids, as
well as magnetic susceptibility. In the introduction
some relevant electromagnetic parameters are discussed.
Throughout the chapter the term permittivity will always
be equivalent to the electrical permittivity, conductivity
to the electrical conductivity, and permeability to the
magnetic permeability.

3.7.1 Introduction

The speed of all electromagnetic radiation (the speed of
light) in vacuum is the same for all the frequencies and
is denoted by c. The value of c is 2.99792458 × 108 m/s.
The speed of light c can be expressed via the permittivity
ε0 and permeability µ0 of free space, as

c2 = 1

ε0µ0
, (3.202)

where ε0 = 8.85418782 × 10−12 F/m and µ0 = 4π ×
10−7 N/A2 (in SI units).

In other substances, however, the speed of elec-
tromagnetic radiation is a function of the radiation
frequency and of the material properties. The factor by
which the speed of a particular frequency of the elec-
tromagnetic radiation is changed relative to c when it
travels inside a material is called the refractive index of
the material at that particular frequency. That is, if v is the
phase velocity of radiation of a particular frequency in
a specific material, then the refractive index n is given by

n = c

v
. (3.203)

The refractive index for a number of materials and
aqueous solutions is given in Tables 3.28 and 3.29, re-
spectively. The dependence of the refractive index of
a material on frequency (except in vacuum, where all
frequencies travel at c) is seen in the effect known
as dispersion. This is the division of white light into
its constituent spectral colors, such as when it travels
through a prism, and is the cause of chromatic aberra-
tion in lenses. If the refractive indices of two materials
are known for a given frequency, then one can compute

the angle by which radiation of that frequency will be
refracted as it moves from the first material into the sec-
ond using Snell’s law. The refractive index is typically
larger than one. The speed of light in air, for example, is
slightly less than c. In denser media, such as water and
glass, light can slow down to fractions of c such as 0.75c
and 0.67c.

The characteristic permittivity ε and permeability µ

of a medium together determine the phase velocity of
electromagnetic radiation through that medium accord-
ing to

v2 = 1

εµ
. (3.204)

Thus the refractive index can be written as:

n2 = εµ

ε0µ0
. (3.205)

Also

ε = εrε0 , (3.206)

µ = µrµ0 , (3.207)

where εr is the relative permittivity or dielectric constant
and µr is the relative permeability of the material. For
nonmagnetic materials like, for example, most polymer
solutions, µr is unity and thus the square of the refractive
index is equal to the dielectric constant.

On the atomic level, the deceleration of the elec-
tromagnetic radiation as it enters a material may be
attributed to the continuous process of absorption and
emission of photons as they interact with the atoms of the
material. Between atoms, the photons travel at the speed
c, as in vacuum. As they interact with the atoms, they are
absorbed and re-emitted, which results in a slight delay.
On a sufficiently large scale the delay manifests itself as
an overall reduction in the speed of light in the mater-
ial. The absorption and emission process can be thought
of as the electric field of a photon creating an oscillat-
ing force on the charges of each atom (primarily the
electrons). This oscillation of charges itself causes the
radiation of an electromagnetic field, which is slightly
out of phase compared to that of the original photon,
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Table 3.28 Some representative values of the refractive
index at the wavelength of λ = 589 nm (yellow sodium
light). Unless stated otherwise, the temperature is 298.15 K.
Melting point is abbreviated by m.p.

Substance n

Air 1.0002926

Bromine 1.661

Carbon dioxide 1.00045

Diamond 2.419

Glass 1.5–1.9

Glycerin 1.4729

Helium 1.000036

Sodium chloride at m.p. (1123.15 K) 1.408

Na2O ·SiO2 (solid) 1.52

Rock salt 1.516

Water (liquid) (293.15 K) 1.333

Water (solid) (273.15 K) 1.31

leading to a slight retardation of the field and an appar-
ent delay in the photon’s travel. Sometimes the refractive
index is defined as a complex number, with the imag-
inary part representing the absorption of the material.
This representation is particularly useful when analyz-
ing the propagation of electromagnetic waves through
metals.

The magnetic permeability µ used in physics and
engineering is the degree of magnetization of a material
in response to a magnetic field and is defined as the
ratio of magnetic flux density B (also called magnetic
induction) to the magnetic field strength H

µ = B
H

. (3.208)

Although magnetic permeability is related in phys-
ical terms most closely to electric permittivity, it is
probably easier to think of permeability as of a sort
of resistance to magnetic flux; just as those mater-
ials with high electrical conductivity let electric current
through easily, materials with high permeabilities allow
magnetic flux through more easily than others.

Sometimes, for non-ferromagnetic substances the
permeability is so close to µ0 that the magnetic sus-
ceptibility χ is used:

µr = 1+χ . (3.209)

The magnetic susceptibility is also defined as the ra-
tio of magnetization M to magnetic field strength H. The
magnetization is defined as the total vector sum of the
magnetic moments of all the atoms in a given volume V

Table 3.29 Refractive index of several aqueous solutions at
the wavelength of 589 nm (yellow sodium light) at 293.15 K
and a weight concentration of 20% unless otherwise indi-
cated

Solute n

Acetic acid - CH3COOH 1.3472
Acetic acid - CH3COOH (100%) 1.3716

Ammonia – NH3 1.3440
Ammonium chloride – NH3CL 1.3708

Ammonium sulfate – (NH3)2SO4 1.3677
Barium chloride – BaCl2 1.3664

Calcium chloride – CaCl2 1.3839

Cesium chloride – CsCl 1.3507

Citric acid – (HO)C(COOH)3 1.3598

Ethanol – CH3CH2OH 1.3469

Ethanol – CH3CH2OH (100%) 1.3614

Formic Acid – HCOOH 1.3437

Glycerol – CH2OHCHOHCH2OH 1.3572

Glycerol – CH2OHCHOHCH2OH (100%) 1.4735

Hydrochloric acid – HCl 1.3792

Magnesium chloride – MgCl 1.3859

Methanol – CH3OH 1.3381

Methanol – CH3OH (100%) 1.3290

Potassium bromide – KBr 1.3591

Silver nitrate – AgNO3 1.3574

Sodium chloride – NaCl 1.3684

Sulfuric acid – H2SO4 1.3576

divided by that volume. From Table 3.30, it is clear that
the permeabilities of common diamagnetic and param-
agnetic materials do not differ substantially from that of
free space. In fact, to all intents and purposes, the mag-
netic properties of such materials can be safely neglected
(µr = 1). Measurements of the magnetic susceptibility
are described in detail in [3.222–226].

3.7.2 Dielectric Constant

The dielectric constant εr is an expression of the extent
to which a material concentrates electric flux, and is the
electrical equivalent of the relative magnetic permeabil-
ity µr. As the dielectric constant increases, the electric
flux density (the displacement current) increases. In
electromagnetism, the permittivity ε of a medium is also
introduces as the ratio D/E of the electric displacement
D to the electric field strength E when an external field
is applied to the substance. Similarly to the magnetic
susceptibility the electric susceptibility is defined as

χe = εr −1 , (3.210)
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Table 3.30 Magnetic susceptibilities of some ferro-, para-
and diamagnetic materials at different temperatures. For
temperatures other than room temperature, the value is
given next to the material name. The following notation
is used: (l) liquid, (g) gas, (s) solid. The values were taken
from the sources indicated in the table

Material χ

Acetone (C3H6O) (l) [3.227] −5.7803 × 10−06

Aluminum (s) [3.228] 2.2 × 10−5

Ammonia (g) [3.228] −1.06 × 10−5

Antimony (l, 903.78 K) [3.229] −5.74409 × 10−7

Bismuth (l, 544.55 K) [3.229] −6.63033 × 10−6

Bismuth (s) [3.228] −1.67000 × 10−4

Cadmium (l, 673.15 K) [3.230] −1.63049 × 10−3

Chlorine (Cl2) (l, 238.65 K) [3.231] −1.11623 × 10−5

Copper (s) [3.228] −9.8 × 10−6

Diamond (s) [3.228] −2.2 × 10−5

Ethanol (C6H6O) (l) [3.227] −3.55392 × 10−6

Germanium (l, 1211.67 K) [3.232] 6.25289 × 10−6

Glycerol (C3H8O3) (l) [3.227] −9.82884 × 10−6

Hydrogen (H2) (l, 20.3 K) [3.231] −2.29758 × 10−6

Hydrogen (g, 1 atm) [3.228] −2.1 × 10−9

Indium (l, 673.15 K) [3.230] −8.26742 × 10−4

Indium (l, 429.75 K) [3.229] −5.02831 × 10−6

Iron (s) [3.228] 3.0 × 103

Lead (l, 600.62 K) [3.232] −1.1773 × 10−5

Lead (l, 600.61 K) [3.229] −8.97515 × 10−6

Mercury (l) [3.231] −2.84026 × 10−5

MnZn (Fe2O4)2 (s) [3.228] 2.5 × 103

Nitrogen (g, 1 atm) [3.228] −5.0 × 10−9

Oxygen (O2) (l, 90 K) [3.231] 3.44981 × 10−3

Oxygen (g, 1 atm) [3.228] 2.09 × 10−6

Potassium (l, 673.15 K) [3.230] 2.07219 × 10−4

Silicon (s) [7] −3.7 × 10−6

Silver (l, 1234.93 K) [3.232] −2.64816 × 10−5

Silver (l, 1234.93 K) [3.229] −2.57661 × 10−5

Sulphuric acid (H2SO4) (l) [3.231] −9.1473 × 10−6

Terbium (s) [3.228] 9.51 × 10−2

Tin (l, 505.08 K) [3.232] −3.1157 × 10−6

Tin (l, 505.08 K) [3.229] −1.31758 × 10−6

Toluene (C7H8) (l) [3.227] −7.69998 × 10−6

Tungsten (s) [3.228] 6.8 × 10−5

Water (l) [3.231] −9.04015 × 10−6

Water (l) [3.228] −9.0 × 10−6

where the electric susceptibility χe, is also defined as
the ratio of polarization P to the electric field strength
E. In general, the dielectric constant can be defined as

a complex number, with the real part expressing reflec-
tive surface properties (Fresnel reflection coefficients),
and the imaginary part expressing the radio absorption
coefficient kv.

When an electric field is applied to a medium, an
electric current propagates. The total current propagat-
ing in a real medium is in general composed of two
parts: a conduction current Jc and a displacement cur-
rent Jd. A perfect dielectric is a material that shows
displacement current only. In the case of a leaky di-
electric medium (i. e., when conduction currents are not
negligible) the total current density is

Jtot = Jc + Jd = σ E+ iωεE = iωε∗E , (3.211)

where σ is the specific conductivity of the medium, and
the complex permittivity ε∗ is defined as

ε∗ = εr − i
σ

ε0ω
, (3.212)

where i = √−1, and ω = 2π f is the angular frequency.
The permittivity of liquids in the radio frequency and

microwave regions can also be presented by the Debye
equation [3.233, 234]:

ε∗ = ε′ + iε′′ , (3.213a)

where

ε′ = ε∞ + εs − ε∞
1+ω2τ2 , (3.213b)

ε′′ = (εs − ε∞) ωτ

1+ω2τ2 . (3.213c)

εs is the permittivity measured in a static field or at
low frequencies where no relaxation effects occur, and
ε∞ is a parameter describing the permittivity in the
high-frequency limit. τ is the relaxation time for mo-
lecular orientation. The values of the dielectric constant
for a number of liquids and gases are given in Table 3.31.

3.7.3 Electric Conductivity

The electric conductivity is a measure of how well a ma-
terial accommodates the transport of electric charge (the
detailed physical mechanisms of conductivity in liquids
are discussed in Chap. 22). Conductance is an electri-
cal phenomenon where a material contains movable
particles of electricity. When a difference of electri-
cal potential is applied across a conductor, its movable
charges flow, and an electric current appears. A con-
ductor such as a metal has high conductivity, and an
insulator like glass, or vacuum, has low conductivity.

Part
B

3
.7



Material Properties: Measurement and Data 3.7 Electric and Magnetic Parameters of Liquids and Gases 161

Table 3.31 The dielectric constants εr measured in static
fields or at low frequencies where no relaxation effects
occur

Solvent εr T (K)

Acetone1 20.7 298.15

Acetonitrile1 36.7 298.15

Ammonia1 (239 K) 22 298.15

Ammonia2 16.61 293.2

Argon2 1.3247 140

Benzene1 2.27 298.15

Bromine2 3.1484 297.9

Bromine trifluoride2 106.8 298.2

Chlorine2 2.147 208.0

Dimethyl acetamide1 37.78 298.15

Dimethyl sulfoxide1 46.7 298.15

Dioxan1 2.21 298.15

Ethanol 24.3 298.15

Ethylene diamine1 12.9 298.15

Hydrogen2 1.2792 13.52

Hydrogen chloride2 14.3 158.9

Hydrogen cyanide1 (289 K) 118.3 298.15

Hydrogen fluoride2 83.6 273.2

Iodine2 11.08 391.25

Krypton2 1.664 119.8

Oxygen2 1.5684 54.478

Ozone2 4.75 90.2

Phosphorus2 4.096 307.2

Pyridine1 12 298.15

Selenium2 5.44 510.65

Sulfur2 3.4991 407.2

Sulfuric acid1 101 298.15

Water 80.1 293.15

Xenon2 1.88 161.35
1 denotes the values adopted from [3.235] and [3.236],
2 denotes the values adopted from [3.237–239]

A semiconductor has a conductivity that may vary with
conditions, such as exposure to certain frequencies of
light.

Electric currents in electrolytes are flows of elec-
trically charged ions. For example, if an electric field
is applied to a solution of salt NaCl, which dissociates
to Na+ and Cl−, the sodium ions will move towards
the negative electrode (anode), and the chlorine ions
will move towards the positive electrode (cathode). If
the conditions are right, redox reactions will take place,
which release electrons from the chlorine, and allow

electrons to be absorbed into the sodium. In water ice and
in certain solid electrolytes, flowing protons constitute
the electric current.

The specific electrical conductivity σ is the recipro-
cal of the specific electrical resistivity measured in SI
units in Ohm m (Ω m). The corresponding units of σ are
S/m (S = Ω−1 stands for Siemens). Table 3.32 shows
the value of σ measured for a number of substances. It
is equal to the ratio of the current density J to the elec-
tric field strength E, as defined in the previous section.
The latter also applies to the electrolytic conductivity of
fluids.

Since in ordinary nonmetallic liquids the electric
charge and current are generally related with dissolved
ions, charge may be induced in poorly conducting liquids
even though equilibrium net charge initially is absent.
In electrohydrodynamics most work until the 1960s fo-
cused on the behavior of perfect or good conductors
(mercury or water), or almost perfect dielectrics (ap-
olar liquids such as benzene). That began to change
following studies of poorly conducting liquids – leaky
dielectrics [3.240].

The leaky dielectric can be modeled by the Navier–
Stokes equations to describe fluid motion and an
equation of charge conservation employing its Ohmic

Table 3.32 Representative values of specific conductivities

Substance σ (1/�cm) T (K)

Copper 5.8 × 105 293.15

Iron 1.1 × 105 273.15

Lead 4.9 × 105 273.15

Lithium chloride (melt) 6.221 983.15

Mercury 1.1 × 104 293.15

Molten oxide CaO ·SiO2 0.8 2023.15

Molten oxide K2O ·2SiO2 1.5 2023.15

Molten oxide Li2O ·SiO2 5.5 2023.15

Molten oxide Li2O ·2SiO2 2.5 2023.15

Molten oxide Na2O ·SiO2 4.8 2023.15

Molten oxide Na2O ·2SiO2 2.1 2023.15

Potassium chloride (0.01%) 1.3 × 10−2 298.15

in water

Potassium chloride (melt) 2.407 1145.15

Sodium chloride (solid) 1 × 10−3 1073.15

Sodium chloride (melt) 3.9 1173.15

Sodium at melting point (m.p.) 1.04 × 105 370.98

Sodium chloride at m.p. 3.58 1074.15

Sulphuric acid (0.4%) in water 7.5 × 10−1 291.15

Water 4 × 10−8 291.15

Xylene 1 × 10−19 298.15
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conductivity. Electromechanical coupling occurs only
at the interfaces where charge, carried to the interface
by conduction, results in stresses of electric origin dif-
ferent from those present in perfect dielectrics or perfect
conductors. With perfect conductors or dielectrics with
no embedded charges, the stresses of the electric origin
are perpendicular to the interface and alterations of the
interfacial shape combined with the interfacial tension
serve to balance the electric stress. Leaky dielectrics are
different because free charges accumulated on the inter-
face modify the field, and in particular, produce shear
stresses. Viscous flow develops to provide stresses to
balance the action of the shear stress components re-
sulting from the tangential electric field acting on the
interfacial charge.

The leaky dielectric model arises naturally through
a scale analysis. Under static conditions, electric and
magnetic phenomena are independent since their fields
are uncoupled [3.241]. Insofar as the characteristic time
for electrostatic processes is large compared to that for
magnetic phenomena, the electrostatic equations furnish
an accurate approximation. When external magnetic
fields are absent, magnetic effects can be ignored com-
pletely. From Maxwell’s equations, the characteristic
time for electric phenomena τc can be identified as the
ratio of electric permittivity and conductivity,

τc = ε

σ
. (3.214)

For magnetic phenomena the characteristic time τM is
the product of the magnetic permeability, conductivity
and the square of the characteristic length

τM = µσl2 . (3.215)

Transport process time scales τP arise from viscous re-
laxation, diffusion, oscillation of an imposed field, or
motion of a boundary. Slow processes are defined as
those where τP ≥ τc 	 τM. The second inequality can be
rearranged to give (εr/µr)

1/2 ε0/σ 	 l (ε0µ0)
1/2, and

since c = (ε0µ0)
−1/2, the right-hand side of this inequal-

ity is extremely small for leaky dielectric systems, for
example most polymer solutions. On the other hand, if
τP 	 τc, the liquid could be considered a perfect con-
ductor, while for τP ∼ τc it is a leaky dielectric (a poor
conductor), where interaction of the electric and hydro-
dynamic fields is still very important in spite of the fact
that the fluid is electrically neutral in the bulk and the
excessive charge accumulates only at the interfaces.

Ion Mobility
In general, ions are responsible for the transport of the
electric charge in fluids. There are two aspects of ionic

motion. First, there is the individual aspect. This con-
cerns the dynamic behavior of separate ions. These ionic
motions are basically random in direction and speed.
Second, ionic motions have a group aspect that is of
particular significance when more ions move in certain
directions than in the others, and produce a drift, or flux,
of ions. A flux of ions can come about in three ways.
If there is a difference in the concentration of ions in
different regions of the electrolyte (a leaky dielectric),
the resulting concentration gradient produces a flow of
ions. This phenomenon is termed diffusion (Sect. 3.6).
If there are differences in the electrostatic potential at
various points in the electrolyte, then the resulting elec-
tric field produces an additional flow of charge (and
thus, of the ions) in the direction of the electric field.
This is termed migration or conduction. Finally, if a dif-
ference in pressure, density, or temperature exists in
various parts of the electrolyte, then the liquid begins to
move as a whole or parts of it move relative to the other
parts. This is an ordinary hydrodynamic flow, which,
however, results in ion/charge convection [3.236]. There
are of course fluids where the electric charge is trans-
ported by electrons and holes irrespective of the motion
of the molecules/ions in the fluid. This is characteristic
of metallic fluids such as mercury or molten alloys. The
electric charge carriers in a fluid can consist of both ions
and electrons. Examples of such fluids are solutions of
conducting polymers like MEH-PPV [poly(2-methoxy,
5-(2’-ethyl-hexoxy)-1, 4-phenylene-vinylene)] [3.242,
243], polypyrrole [3.244] and polyaniline doped with
d,l-camphorsulfonic acid [3.245].

Ions, like electrons, do not move at the speed of light
when carrying charge from one point to another. Ions
in solution participate in random (Brownian) motion in
which they change momentum as a result of collisions
with the other molecules and ions. Statistical bias in
the motion of ions without electric field is the result
of diffusion due to inequalities in the ion numbers in
different regions. Robinson and Stokes [3.246] note that
in the case where there are no other forces, it may be
convenient to consider the electric field as representing
a force. In this discussion we will concentrate on the
electric field as the driving force for ion drift.

A Simplified Picture of Ionic Motion under the Influ-
ence of an Applied Electric Field. Under the influence
of an external force like those corresponding to an ap-
plied electric field, ion motions are affected because of
the fact that the ions are charged. Hence, the imposition
of an electric field singles out one direction in space for
preferential ionic movement. The walk is no longer per-
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fectly random – the ions drift. Were an ion is completely
isolated (in vacuum), it would accelerate indefinitely
until it will collide with an electrode. In an electrolyte
solution, an ion very soon collides with some other ion
or with a solvent molecule that crosses its path. The ion
changes directions; however, the electric field imparts to
the ion a direction.

The initial velocity of the ion can be ignored pre-
cisely because it is random and therefore does not
contribute to the preferred motion (drift) of the ion. The
applied electric field imparts a sure component to the
random velocities of the ion. This extra velocity compo-
nent is in the direction of the electric force vector F and
is called the drift velocity.

From Newton’s second law we have the acceleration
as

dv

dt
= F

m
, (3.216)

where m is the ion mass.
The drift velocity (vd) is estimated as the product of

the acceleration and the average time between collisions
τ ,

vd = dv

dt
τ = τ

m
F . (3.217)

The flux of ions is related to the drift velocity in the
following way

Flux = Concentration of ions × Drift velocity .

(3.218)

Thus, if F is an electric force that induces conduc-
tion, then this equation is the molecular basis of the
fundamental relation used in the macroscopic view of
conduction, i. e.

Flux ∝ Electric field . (3.219)

The expression (3.217) reveals the condition under
which the proportionality between the drift velocity
(flux) and electric field breaks down. It is essential that
in a collision an ion does not preserve any part of its ex-
tra velocity component arising from the electric force.
If it did, then the actual drift velocity would be greater
than that calculated by (3.217) because there would be
a cumulative carryover of the extra velocity from col-
lision to collision. Thus, every collision must eliminate
all traces of the force-derived extra velocity, and the ion
must start afresh to acquire the additional velocity. This
condition can be satisfied only if the drift velocity, and
therefore the field, is sufficiently small.

The proportionality constant τ/m in (3.217) is re-
ferred to as the (generalized) absolute mobility Mabs
because it is an index of how mobile the ions are

Mabs = τ

m
= vd

F
. (3.220)

The force acting on an ion in an electric field (E) is equal
to the charge of the ion times the field at the point where
the ion is situated

F = zie0 E , (3.221)

where e0 is the electron charge, and zi the valence of the
ion. In the literature, mobilities are usually defined as
the ratio of vd to E, which introduces the conventional
or electrical mobility

Me = vd

E
= Mabszie0 . (3.222)

Though the two types of mobilities are closely related,
it must be stressed that the concept of absolute mo-
bility is more general because it can be used for any
force that determines the drift velocity of ions and not
only the electric force used in the definition of electrical
mobilities.

The Relation between the Equivalent Conductivity
and the Absolute Mobility of an Ion. The motion of an
isolated body is obviously governed by Newton’s second
law, but in dealing with the motion of ions it is not usually
necessary to consider the acceleration unless electrical
fields of very high intensities or frequencies are involved.
Under normal conditions, the ions are almost instanta-
neously accelerated to the point where their motion is
limited by the viscous drag of the solvent, and all the
energy supplied by the electric field is dissipated by the
viscous forces. The ions thus move with a constant lim-
iting or terminal velocity, which for all reasonably small
fields is directly proportional to the applied field. This
is of course the reason for the validity of Ohm’s law for
electrolytes subjected to ordinary electric fields, and for
the fact that the conductivities of ion-containing liquids
have no simple relation to the ion masses. There is, for
example, little difference between the ionic conductiv-
ities of electrolytes containing chloride and iodide ions
even though the latter have nearly four times the mass
of the former.

From (3.218) and (3.220), the flux of ions depends
on the ion’s absolute mobility Mabs, where the absolute
mobility is defined as the ion’s speed due to a unit force
acting on it [3.247]. In (3.221), the electric force is ex-
pressed as acting per ion but may be more conveniently
expressed as that acting per mole of ions. Thus Mabs can

Part
B

3
.7



164 Part B Measurement of Primary Quantities

relate the limiting speed vd to the magnitude of the force
per mole f

vd = Mabs f . (3.223)

In the case of an electric field, we can express the force
per mole as fe

fe = zi Fa E , (3.224)

where zi is the valence and Fa is the Faraday number and
Fa = e0 NA (Coulomb/mol), NA is Avogadro’s number.
Thus zi Fa is the charge per mole of ions and

vd = Mabszi Fa E , (3.225)

or

vd = Me E , (3.226)

as in the case where all forces but E can be neglected.
Then

Me = Mabszi Fa . (3.227)

Neither Mabs nor Me can be conveniently measured but
they can be related to the equivalent ionic conductiv-
ity λ, which can be measured. To find this relationship,
consider a column in the electrolyte solution of length l
and of uniform cross-sectional area A. If there is a po-
tential difference V between the ends of the column, it
will drive a current I of one ion species through the col-
umn. If G is the conductance of the column for that ion
species, the current will be given by Ohm’s law as

I = GV . (3.228)

The conductance G depends on length and area and is
proportional to the specific ionic conductivity σ , so

G = σ A

l
. (3.229)

The equivalent conductivity λ is obtained by dividing
the specific conductivity σ by the ionic concentration in
equivalents

λ = σ

ziCi
, (3.230)

where Ci is the concentration in mol/m3 and ziCi the
concentration in equivalents. When the ion concentra-
tion tends to zero in a solution, λ tends to λ0, the limiting
equivalent conductivity. The electric field driving the
current is the voltage gradient

|E| = V

l
. (3.231)

From (3.228) to (3.231), we obtain the electric current

I = λziCi A|E| . (3.232)

We can also relate the current to the drift velocity. Since
the electric charge per unit volume is, ziCi Fa, the charge
in the column considered is ρe = ziCi Fa Al. This charge
moves out of the column in the time l/|vd|. Thus the
rate of passage of electric charge, which is actually the
electric current, is

I = Cizi Fa Al

l/|vd| = Cizi Fa A|vd| . (3.233)

Equating the two expressions for the current, (3.232)
and (3.233), we have

vd = λ|E|
Fa

. (3.234)

From (3.226) and (3.234) we express the electric mobil-
ity Me in terms of λ as

Me = λ

Fa
, (3.235)

whereas from (3.225) and (3.235) the absolute mobility
Mabs is related to λ as

Mabs = λ

zi F2
a

(for force per ion) , (3.236a)

Mabs = λNA

zi F2
a

(for force per mole) . (3.236b)

The ratio between Mabs of an ion X to Mabs of K+
(potassium ion) is defined as the relative mobility Mrel X
of ion X. Hence, the relative mobility of ion X of valence
zX is given by

Mrel X = λX

zXλK
, (3.237)

since z is +1 for K+. Both mobilities must be taken
at the same temperature. For a monovalent ion Y, its
relative mobility will simply be given by

Mrel Y = λY

λK
, (3.238)

where λY is the equivalent conductivity of Y at the same
temperature as for λK. Table 3.33 contains the values of
the limiting equivalent conductivity λ0, the relative mo-
bility Mrel, the absolute mobility Mabs and the electric
mobility Me for a number of ions in water at 298.15 K.
Table 3.34 shows the dependence of the limiting equiva-
lent conductivity on temperature for a number of ions in
water. Tables 3.35 and 3.36 contain the values of λ0 for

Part
B

3
.7



Material Properties: Measurement and Data 3.7 Electric and Magnetic Parameters of Liquids and Gases 165

a number of ions in protic and aprotic solvents, respec-
tively. Protic solvents are strong hydrogen donors. For
large concentrations the influence of the ions on each
other because of proximity must be taken into account.

The Viscous Force Action on an Ion in Solution – The
Stokes–Einstein Relation. If asserting the similarity
between a macroscopic sphere moving in an incom-
pressible fluid and a particle (ion) moving in a solution,
then the calculations for viscous force acting on a macro-
scopic sphere can be used for that acting on an ion. The
value of the viscous force depends on several factors
– the velocity v and diameter d = 2r of the sphere (an
ion) and the viscosity µ and density ρ of the medium.
When the hydrodynamic conditions are such that the
Reynolds number (3.239) is much smaller than unity, the
viscous force opposing the sphere is given by Stokes’
law (3.240).

Re = |v|dρ

µ
, (3.239)

FStokes = 6πrµv . (3.240)

The net driving force due to the concentration gradient
and the external applied force (electric field) produces
a steady-state diffusion/conduction flux of ions J for
which one can imagine a drift velocity of the diffusing
particles. Since the drift velocity is a steady-state veloc-
ity, the net driving force (Fnet) must be opposed by an
equal resistive force which can be taken to be the Stokes
viscous force. Hence,

−Fnet = 6πrµvd . (3.241)

with v being equal to the drift velocity vd.
If we, for example, consider a bath contain-

ing a polymer solution in an electric field between
two electrodes (like in the electrospinning of poly-
mer solutions), we can estimate the drift velocity of
the charge carriers, which is mainly ionic impurities
(depending on the polymer and solvent). Using the fol-
lowing values: |E| = 1 g1/2/(cm1/2 s) (300 V/cm); e0 =
4.8 × 10−10 (g1/2 cm3/2)/s (1.6 × 10−19 C); zi = +1;
µ = 10−2 −10 g/(cm s) (1–1000 cP) and r = 10−8cm
(typical for small ions such as Cl−), |vd| is of the or-
der of 1 cm/s to 10−3 cm/s. The value of |vd| has been
estimated from (3.241) with |Fnet| = e0|E|. For small
ions r is the ionic radius, correct to the order of magni-
tude [3.236]. The solvation radii [3.246] are one to two
orders larger. With the above values and ρ ∼ 1 g/cm3,
one can easily see that Re � 1.

From (3.220, 222) and (3.241) we have

Mabs = 1

6πrµ
, (3.242)

Me = zie0

6πrµ
. (3.243)

The mobility given by (3.243) is also called the Stokes
mobility.

The Einstein relation between the ion diffusion co-
efficient D and the absolute mobility Mabs is one of the
most important relations relevant for the diffusion of
ions [3.236]

D = MabskBT = MekBT

zie0
, (3.244)

where kB is the Boltzmann constant and T the tempera-
ture.

With the help of (3.242), (3.244) yields

D = kBT

6πrµ
, (3.245)

Equation (3.245) is the Einstein–Stokes relation and
it links the processes of diffusion and viscous flow.

The real question centers on the applicability of
Stokes’ law to microscopic ions moving in a structured
medium in which the surrounding particles are roughly
of the same size as the ions.

Mobility Measurements. The natural conductivity of
dielectric liquids (leaky dielectrics) is generally very
small. Therefore, in order to make the measurement of
charge mobility easier, it is necessary to enhance the
normal charge density in a controlled manner, usually
by some form of transient external excitation. The mo-
bility of charge carriers is defined as its drift velocity per
unit of electric stress (3.226). An estimate of mobility
is achieved by a time-of-flight method, which requires
a measure of the time necessary for the charge to travel
a known distance in the liquid under the influence of
a uniform electric field. A detailed description of various
experimental techniques of measurement can be found
in [3.248]. A general arrangement for mobility measure-
ments is illustrated in Fig. 3.57 [3.249]. Excess charge is
created at the emitter electrode E. By applying the appro-
priate polarity of voltage V , ions of one sign are swept to
the collector electrode C. The emitter electrode is main-
tained at a high potential relative to earth. The grid pair
AB and DF act as electrical shutters, or gates, to allow
the passage of carriers across the drift space BD. The
gates are arranged to open or close with the frequency
of an alternating current (AC) voltage applied to them.
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Table 3.33 Experimental values of the limiting equivalent ionic conductivity λ0, the relative ion mobility Mrel, the
absolute ion mobility Mabs and the electrical ion mobility Me for a number of different ions in water at 298.15 K. Most
of the values were taken from [3.253] and [3.254]. See also [3.246]

Ion Valence λ0 Mrel Mabs Me

[(cm � equiv.)−1] (mol s g−1 × 109) (cm3/2g−1/2 × 103)

Acetate −1 40.866 0.556 4.3907 0.4236

Br −1 78.1 1.0626 8.3912 0.8095

Cl −1 76.35 1.0388 8.2032 0.7914

ClO4 −1 67.326 0.916 7.2336 0.6979

F −1 55.4 0.7537 5.9523 0.5742

HCO3 −1 44.4675 0.605 4.7777 0.4609

I −1 76.8 1.0449 8.2515 0.7961

NO3 −1 71.46 0.9722 7.6778 0.7407

OH −1 198.3 2.698 21.3057 2.0555

Ag 1 61.9 0.8422 6.6506 0.6416

Cs 1 77.2 1.0503 8.2945 0.8002

H 1 350.0805 4.763 37.6133 3.6287

K 1 73.5 1.0 7.8970 0.7619

Li 1 38.6 0.5252 4.1473 0.4001

Na 1 50.1 0.6816 5.3828 0.5193

NH4 1 73.5 1.0 7.8970 0.7619

Rb 1 77.8365 1.059 8.3629 0.8068

SO4 −2 80.0 0.5442 4.2977 0.8292

Ba 2 63.798 0.434 3.4273 0.6613

Ca 2 59.5 0.4048 3.1964 0.6167

Cd 2 54.39 0.37 2.9219 0.5638

Co 2 54.39 0.37 2.9219 0.5638

Cu 2 53.655 0.365 2.8824 0.5562

Fe 2 54.39 0.37 2.9219 0.5638

Hg 2 63.651 0.433 3.4194 0.6598

Mg 2 53.0 0.3605 2.8472 0.5494

Mn 2 53.508 0.364 2.8745 0.5546

Ni 2 49.539 0.337 2.6613 0.5135

Pb 2 70.56 0.48 3.7905 0.7314

Sr 2 59.388 0.404 3.1904 0.6156

Zn 2 52.773 0.359 2.8350 0.5470

Fe 3 67.914 0.308 2.4323 0.7040

Gd 3 67.2525 0.305 2.4086 0.6971

La 3 69.678 0.316 2.4954 0.7222

If this frequency is changed continuously, the number of
ions reaching C is a maximum when their transit time
between the gates is equal to, or an integral multiple of,
the period of the pulses. The variation in the collector
current is shown in Fig. 3.57b, where the transit time is
given by the reciprocal of the difference in frequencies
corresponding to adjacent current maxima. The ampli-

tude of the oscillations tends to fall as the frequency of
the gate voltage is raised with the result that the sen-
sitivity of the method is decreased as the drift distance
is increased and the transit time shortened. Meyer and
Reif [3.250] used this method for fields up to 25 kV/m
in liquid helium. Schynders et al. [3.251, 252] used this
method to determine the electron mobilities in liquid ar-
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Table 3.34 Experimental values of the limiting equivalent
conductivity λ0 of ions in water at various temperatures.
The units are (cmΩequiv.)−1. For a more complete set of
data [3.246]

Ion Valence Temperature (K)
273.15 288.15 298.15 308.15

Br− −1 42.6 63.1 78.1 94

Cl− −1 41 61.4 76.35 92.2

I− −1 41.4 62.1 76.8 92.3

Cs+ 1 44 63.1 77.2 92.1

K+ 1 40.7 59.6 73.5 88.2

Li+ 1 19.4 30.2 38.6 48

Na+ 1 26.5 39.7 50.1 61.5

Ca++ 2 31.2 46.9 59.5 73.2

Table 3.35 Limiting ionic conductivities λ0 (cmΩequiv.)−1

in protic solvents at 298.15 K [3.255]. MeOH – Methanol,
EtOH – Ethanol, PrOH – Propane alcohol, BuOH – Butane
alcohol, HCOOH – Formic acid

Ion Valence MeOH EtOH PrOH BuOH HCOOH

Ag +1 50.07

Br −1 56.43 23.88 12.22 8.23 28.3

Cl −1 52.09 21.87 10.45 7.76 26.52

Cs +1 61.33 26.46

I −1 62.62 27.0 13.81 9.52 –

K +1 47.78 22.2 6.88 23.99

Li +1 39.08 17.07 8.1 19.36

Na +1 45.08 20.37 8.35 20.97

NH4 +1 6.68 27.01

NO3 −1 61.13 – – – –

gon. Additional information on mobility measurements
can be found in Chap. 21 of the Handbook.

3.7.4 Broadband Measurement of the
Conductivity and Dielectric Constant

In order to measure the conductivity σ and dielectric
constant εr of a fluid, the apparatus shown in Fig. 3.58
can be used. It consists of a glass syringe with two
brass pistons as the electrodes. Electrode 1 is con-
nected to a linear translation stage that enables accurate
setting of the distance L between the electrodes. Elec-
trode 2 is fixed close to a small hole in the glass syringe
through which the test fluid can escape when the distance
between the electrodes is changed.

The real Re(Z) and imaginary Im(Z) components of
the complex impedance (Z) of the volume between the

Table 3.36 Limiting ionic conductivities λ0 (cmΩequiv.)−1

in some aprotic solvents at 298.15 K [3.255]. DMF –
dimethylformamide, DMSO – dimethylsulfoxide, NMT
– monomethyltryptamine, NMA – monomethylacetamide,
ACN – acetonitrile

Ion Valence DMF DMSO NMT NMA ACN

Ag +1 35.2 86.0

Br −1 53.6 24.1 62.9 11.72 100.7

Cl −1 55.1 24.4 62.7 10.6

Cs +1 16.1 87.3

I −1 52.3 23.8 13.42 102.1

K +1 30.8 14.7 7.28 83.6

Li +1 25.0 11.4 5.65

Na +1 29.9 14.54 7.19 76.9

NH4 +1 38.7

NO3 −1 57.3 106.4

electrodes are measured at different frequencies ( f ) and
different distances (L) with the aid of a spectrum ana-
lyzer [3.256]. The results of the typical used to find σ

and εr are shown in Fig. 3.59 for an aqueous solution
of polyethylene oxide. In order to determine the values
of σ and εr, a model, consisting of resistors and capac-
itors that simulates the impedance of the test fluid is
constructed. For the above solution the model shown in
Fig. 3.60 is appropriate. The impedance of the circuit
shown in Fig. 3.60 is given by

Z = R

1+ iωRC
, (3.246)

where R is resistance, C capacitance and ω the angular
frequency. The real and imaginary parts of (3.246), given
in (3.247), should correspond to the measured values of
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Fig. 3.57 (a) Diagram of double gate arrangement for mobility
measurement, and (b) collector current as a function of the frequency
of the voltage on the gates (after [3.249])
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Fig. 3.58 An apparatus for measuring the electric conduc-
tivity and dielectric constant of a fluid
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Fig. 3.59 A plot of the real Re(Z) and imaginary Im(Z)
parts of the complex impedance of the fluid between the
electrodes of the apparatus in Fig. 3.58. The fluid between
the electrodes was an aqueous solution of polyethylene
oxide: PEO (molecular weight = 4 × 106) at 1% weight
concentration in ethanol/water (40/60)

Re(Z) and Im(Z):

Re(Z) = R

1+ω2 R2C2
, (3.247a)

Im(Z) = −ωR2C

1+ω2 R2C2 , (3.247b)

The equations for Re(Z) and Im(Z) as a function of
ω are fitted to the experimental data shown in Fig. 3.59
in order to find the values of R and C. With the values
of R and C known, σ and εr can be calculated from

σ = L

RS
, (3.248a)

εr = CL

ε0S
, (3.248b)

�

�

Fig. 3.60 A model
that simulates
the impedance of
the test fluid in
Fig. 3.59

where S is the surface area of the electrodes and L
is the length of the sample fluid. Table 3.37 shows
the values of σ and εr for a number of polymer so-
lutions and pure solvents (leaky dielectrics) obtained
by this method. The following notation is used: PAA
for polyacrylic acid, PVA for polyvinyl alcohol, PU for
polyurethane, PCL for polycaprolactone, MC for methy-
lene chloride, DMF for dimethylformamide, and THF
for tetrahydrofuran.

The electrical conductivity is a function of the elec-
tron and ion motion. In the solutions and solvents tested
ion diffusion mainly determines the conductivity of the
solution and the electron conductivity is much smaller.
When measuring the parameters of an electrically con-

Table 3.37 Representative values of εr and σ obtained with
the method described in this section

Polymer εr σ (mS/m)

2% PEO Mw = 6 × 105 67.09 0.85

in ethanol/water (40/60)

2% PEO Mw = 106 66.71 0.81

in ethanol/water (40/60)

1% PEO Mw = 4 × 106 66.12 1.102

in ethanol/water (40/60)

2% PEO Mw = 106 81.96 9.43

in water

6% PAA Mw = 2.5 × 105 79.5 24.47

in ethanol/water (40/60)

6% PVA Mw = 104 65.99 3.73

in ethanol/water (50/50)

6% PU tecoflex 16.75 0.093

in THF/ethanol (50/50)

8% PCL Mw = 8 × 104 25.2 0.142

in acetone

10% PCL Mw = 8 × 104 18.55 0.191

in MC/DMF (75/25)

Distilled water 88.75 0.447

Ethanol (95%) 24.55 0.0624

Acetone 20.7 0.0202

Ethanol/water (40/60) 69.47 0.150

MC/DMF (40/60) 29.82 0.505

MC/DMF (75/25) 21.3 0.273

THF/ethanol (50/50) 15.79 0.037
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ducting medium (a leaky dielectric), the migration of
ions in the high-frequency field causes energy to be
drawn from the circuit, damping the oscillation response.
In circuit terms, the electrodes and the volume between
them are analogous to a capacitor with a resistor in par-
allel. When the resistance across the electrodes is large,
the capacitance derived from the frequency response is
close to the true capacitance of the medium between
the electrodes. As the resistance across the electrodes

is reduced, due to increased ionic conductivity, the os-
cillator is damped and the oscillation frequency falls.
The apparent capacitance thus appears greater than the
true capacitance. The effect of ionic conductivity on
the permittivity measurement can be neglected below
σ = 0.8 S/m [3.257]. Some other methods of measure-
ment of the dielectric constant and electric conductivity
are described in [3.258–262] and in Chap. 21 of the
Handbook.
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