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Fig. 8.6 Definition of wind axis system in the USA
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Fig. 8.7 Definition of model-fixed axis system in Europe

flow direction. The lift force is generally defined as the
force on the model acting vertical to the main flow direc-
tion whereas the drag is defined as the force acting in the
main flow direction. This definition is common all over
the world. However, the definition of the positive direc-
tion of the forces is not universal. Whereas lift (normal
force) and drag (axial force) are defined positive in the
USA (Fig. 8.6), in Europe (Fig. 8.7) weight and thrust
are defined as positive in the wind axis system.

To form a right-hand axis system, the side force
in the USA has to be positive in the starboard direc-
tion. The definitions of the positive moments do not
follow the sign rules of the right-hand system. The pitch-
ing moment is defined as positive turning right around
the y-axis, but yawing and rolling moments are defined
positive turning left around their corresponding axes.
This makes this system inconsistent in a mathematical
sense.

Table 8.1 Definition of positive axis direction

Balance Name of European USA
Axis Component
System

Positive Positive

direction direction

X Axial force In flight In wind

Y Side force To starboard To starboard

Z Normal force Down Up

Mx Rolling Roll to Roll to

moment starboard starboard

My Pitching Turn up Turn up

moment

Mz Yawing Turn to Turn to

moment starboard starboard

The European axis system is a consistent with the
right-hand system and the definition is based on a stan-
dard given by DIN-EN 9300 or ISO 1151. A balance
which always stays fixed in the tunnel, and relative to
the wind axis system, always gives the pure aerodynamic
loads on the model.

In the case of the model-fixed axis system, the bal-
ance does not measure the aerodynamic loads directly.
The loads acting on the model are given by the balance
and the pure aerodynamic loads must then be calculated
from these components by using the correct yaw and
pitch angles. The difference between American and Eu-
ropean definitions of the positive direction remains the
same in this case.

Specification of Balance Load Ranges
Before a balance can be designed, the specifications of
the load ranges and the available space for the balance
are required. This is a challenging step prior to the design
of a balance since cost and accuracy considerations must
be made long before the first tests are performed.

The maximum combined loads specify the load
ranges for the balance design. The maximum design
loads of a balance are defined in various manners. For
example, if several loads act simultaneously, then the
load range must be specified as the maximum combined
load. If the maximum load acts alone, the load range
is defined then as the maximum single load. Usually
such single loads do not exist in wind tunnel tests and
combined loads must be expected. Such combined loads
stress the balance in a much more complicated manner
and therefore deserve very careful attention. The stress
analysis of the balance has to take into account this
situation. Furthermore, the combination of two loads
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sting is attached through the after body of the fuselage.
In some cases the vertical fin (Fig. 8.12) is also used to
support the model.

For tests which require the free flow around the after
body two sting setups (Fig. 8.14) can be used. In such
cases one balance is needed inside each sting. To deter-
mine the influence of the tail sting two measurements are
performed, one with a dummy tail sting and one without
the dummy tail sting in place.

Today the support of the model by wires is seldom
used anymore (Fig. 8.15). In such cases the balance must
be an overhead external balance and the model hangs
from the balance through wires. To keep the model sta-
bile in the tunnel, the system must be preloaded by
weights (Sp), which are usually dampened in a wa-
ter basin under the test section. The advantage of such
a model support is the very low interference on the flow
around the model.

In Fig. 0-96 the model hangs upside down in the tun-
nel minimizing the preload. This is beneficial since the
balance cannot measure loads smaller than the preload.
Sometimes modern wind tunnels test the model upside-
down position in order to preload the balance in the
lift direction. This way the lift generated by the model
contributes to the preload such that the balance signal
does not pass through zero as in a normal setup. In such
a way the additional nonlinearities associated with the
zero-load regime can be avoided.

Mounting Interference
The aerodynamic loads on the model itself are al-
ways affected by the presence of the model mounts.
The mounting loads themselves are subtracted from the
model loads by performing tests without the model in
place. The second effect to be considered is the influ-
ence of the mounts on the flow field around the model
and the influence of the model on the flow field around
the mounts. A complete separation of the effects is not
possible. Therefore it is not possible to eliminate the
influence of the model-mount interference completely.
Several methods for the compensation of model-mount
inference are described in [8.6].

8.1.4 Strain Gauge

Strain Gauge Fundamentals
The basic technique to measure forces with any kind of
wind-tunnel balance is the measurement of the strain on
an elastic spring which is deformed by the aerodynamic
loads acting on the wind-tunnel model. In this chapter the
fundamentals of strain measurement and strain sensors

are described. For wind tunnel balances two major types
of strain sensors are used. The most commonly used is
the wire strain gauge sensor. Also of importance is the
semi-conductor strain gauge.

The wire strain gauge is based on an electro-
mechanical effect developed by W. Thomson (Lord
Kelvin) in 1856. Thomson measured the electrical resis-
tance of a metal wire and found that it could be correlated
to the strain in the wire while stressed.

This effect was subsequently used by E. Simmons
(Caltech) and A.C. Ruge (MIT) in 1938 in the develop-
ment of the wire strain gauge. Simmons was the first to
build a force transducer based on the wire strain gauge
technique while Ruge used his wire strain gauges to per-
form experimental stress analyses. Ruge’s strain gauge
was very successful since it was cheap and easy to han-
dle. Industry needed many of them such that in 1952
a technique was patented to produce the foil strain gauge
in great numbers. No longer was a wire glued on a car-
rier foil. Rather a thin metal foil was glued on the carrier
and the contour of the wire was etched out of the metal
foil by a photo chemical process. This technique is still
used today to produce the foil strain gauge sensors, as
it produces very precise sensors with high resolution at
a low price.

The physical principle of a wire strain gauge is
that a change in electrical resistance is produced when
a strain is applied to the gauge. The electrical resistance
of a wire can be written as:

R = ρl

A
, (8.1)

where R is the resistance of wire, l the length of the
gauge grid, A the cross section of the wire and ρ the
specific electric resistance.

The specific electric resistance is given as:

ρ = 2mv0 Al

N0e2λ
, (8.2)

where m is the mass of an electron, v0 the velocity of the
electrons, N0 the number of free electrons, e the charge
of an electron and λ the free wave length of the elec-
trons. With the above equation for the specific electric
resistance, the resistance of a wire can be formulated
as:

R = 2mv0l2

N0e2λ
. (8.3)
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Force and Mom8. Force and Moment Measurement

Measurement of steady and fluctuating forces act-
ing on a body in a flow is one of the main tasks in
windtunnel experiments. In aerodynamic testing,
strain gauge balances will usually be applied for
this task as, particularly in the past, the main focus
was directed on the measurement of steady forces.
In many applications, however, balances based
on piezoelectric multicomponent force transducers
are a recommended alternative solution. Contrary
to conventional strain gauge balances, a piezo
balance features high rigidity and low interfer-
ences between the individual force components.
High rigidity leads to very high natural frequen-
cies of the balance itself, which is a prerequisite
for applications in unsteady aerodynamics, partic-
ularly in aeroelasticity. Moreover for measurement
of extremely small fluctuations, the possibility ex-
ists to exploit the full resolution independently
from the preload.

Concerning the measurement of small, steady
forces, the application of piezo balances is re-
stricted due to a drift of the signal at constant
load. However, this problem is not as critical as
generally believed since simple corrections are
possible.

The aim of this chapter is to give an impression
of the possibilities, advantages and limitations
offered by the use of piezoelectric balances. Sev-
eral types of external balances are discussed for
wall mounted models, which can be suspended
one-sided or twin-sided. Additionally an inter-
nal sting balance is described, which is usually
applied inside the model. Reports are given on se-
lected measurements performed in very different
windtunnels, ranging from low-speed to tran-
sonic, from short- to continuous running time and
encompassing cryogenic and high pressure prin-
ciples. The latter indicates that special versions of
our piezo balances were applied down to tem-
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peratures of −150 ◦C and at pressures of up to
100 bar.

The projects span from a wing/engine combin-
ation in a low-speed wind tunnel to flutter tests
with a swept-wing performed in a Transonic Wind
Tunnel, and include bluff bodies in a high pres-
sure and cryogenic windtunnel, as well. These tests
serve as examples for discussing the fundamen-
tal aspects that are essential in developing and
applying piezo balances. The principle differences
between strain gauge balances and piezo balances
will also be discussed.
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output proportional to lift/pitch and side force/yaw. The
signals which are proportional to each of these loads
must be then calculated by summing or subtracting the
signal from one another, before being fed into the data
reduction process. The advantage is that the associ-
ated concentrated wiring on each section is much less
sensitive to temperature effects.

Force Balances. This type of balance uses two mea-
surement sections placed in both the forward and the aft
section of the balance. In these measurement sections
a forward and aft force is measured most often through
tension and compression transducers. These forward and
aft force components are used to calculate the resulting
force in the plane as well as a moment around the axis
(perpendicular to the measurement plane). An example
of a typical force balance is shown in Fig. 8.32.

Moment-Type Balances. Moment-type balances have
a bending moment measuring section in the front as
well as in the aft regions of the balance (S1 and S2 in
Fig. 8.33).

The measurement of the two bending moments (S1
and S2) is used to obtain a signal which is proportional
to the force in the measurement plane and a second one
which is proportional to the moment around the axis
(perpendicular to the measurement plane). The stress
distribution shows that the moment My (Mz) is propor-
tional to the sum of S1 and S2. However, the force Fy
(Fz) is proportional to the difference in the signals S1
and S2.

To measure the rolling moment (Mx) one bending
section must be applied with shear stress gauges to de-
tect the shear stress τ . The most complicated part of
the balance is the axial force section which consists of
flexures and a bending beam to detect axial force. These
flexures enable axial movement whilst carrying the other
loads.

Direct-Read Balances. A direct-read balance can
be categorized as either a force-balance type or as
a moment-balance type. Instead of measuring a force
or a bending moment at each section separately, half
bridges on every section are directly wired to a moment
bridge while the other set of half bridges are directly
wired to a force bridge. Thus the difference between
direct-read balances and the other types is only in the
wiring of the bridges. The disadvantage of such a wiring
is the length of the wires from the front to the aft ends.
Temperature changes inside these wires cause errors in
the output signals.
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Fig. 8.32 Force balance with tension transducers in forward- and
aft-sections (courtesy of Able Corp.)
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Fig. 8.33 Workings of a moment-type balance
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Fig. 8.34 Moment-type balance

Box Balances
The main difference between box balances and sting
balances are the model and sting attachment area
(Fig. 8.35). The load transfer in such balances is from
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