Density and ultrasound velocity of some pure metals in liquid state.

P S Popel¹, <u>V E Sidorov¹</u>, D A Yagodin¹, G M Sivkov¹, A G Mozgovoj²

¹Department of Physics, Urals State Pedagogical University, Ekaterinburg, Russia ²Institute for High Temperatures, Moscow, Russia *E-mail: sidorov@uspu.ru*

The main aim of this work is a metrological test of experimental installations for density (d) and ultrasound velocity (V_s) determination in liquid metals and alloys in a wide temperature range. Density was measured using absolute variant of gamma-absorption technique with accuracy of 0,5%. Ultrasound velocity data were obtained by pulse-phase method at frequency of 31,33 MHz with accuracy of 0,2%. The sensitivity for both methods was lower than 0,1%. We studied density of aluminium, gallium, palladium, bismuth, cooper and silver and ultrasound velocity of bismuth, gallium and silver. In the last case only low-melted metals were used due to the temperature limitation of quartz crucibles. The purity of all metals was higher than 99,99%. The results are given in tables 1 and 2.

Table 1. Density and its temperature coefficient taken from equation $d = d_L^* - A(T - T_L^*)$.

Metal	$d_L, kg/m^3$		A, $kg/(m^3 \cdot K)$		Temperature
	experiment	[1]	experiment	[1]	range, K
Al	2406	2410	0,327	0,337	T _L -1823
Ga	6055	6080	0,606	0,6	T _L -1500
Pd	10577	10380	1,055	1,169	T _L -1973
Bi	9919	10120	1,260	0,97	T _L -1333
Cu	7880	8039	0,725	0,96	T _L -1873
Ag	9214	9320	1,042	0,97	T _L -1573

* here d_L – density at melting point T_L .

Table 2. Ultrasound velocity and its temperature coefficient.

Metal	v _s , m/s		$dv_{\rm s}/dT$, m/(s·K)		Temperature
	experiment	[2]	experiment	[2]	range, K
Bi	1645	1674 (544K)	-0,061	~ 0	T _L -595
			-0,182	-0,18	595-800
			-0,234	-0,22	800-1270
			-0,279	-	1270-1375
Ag	2666	2710	-0,407	-0,41	T _L -1450
		(1243K)			
Ga	2877	2873 (303K)	-0,269	-0,3	T _L -1400

The extension of temperature range in ultrasound velocity determination allowed us to fix the abnormal behavior of quantity for Bi and Ga at 1170 and 1270 K respectively.

- 1. V I Nizenko and L I Floka, Surface tension of liquid metals and alloys (Moscow, Metallurgy, 1981) 208 (in Russian).
- 2. M B Gitis and I G Mikhailov, Acoustics J., 12 (1966) 151-159.