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Abstract 
 
The infrared-optical properties of ceramics are correlated with the complex index of refrac-
tion of the material and the structure of the ceramic [1, 2]. By changing these parameters, 
the infrared-optical properties can be changed in a relatively wide range. 
The correlation of the structural properties, like the porosity or the pore sizes, and the ma-
terial properties, like the complex index of refraction, on the one hand and the infrared-
optical properties, like the emittance, on the other hand, are described by a solution of the 
equation of radiative transfer and the Mie-theory. Within this work, low-e ceramics, which 
have significantly lower emittances than conventional ceramics, were prepared by optimi-
zation of their composition and structure. The spectral emittance of these ceramics was 
measured, and from the spectral emittance a total emittance, which depends on tempera-
ture, was calculated. As a result one obtains ceramics, which have a total emittance of 0.2 
at a temperature of 1100 K. In comparison to conventional ceramics with a typical total 
emittance of 0.8 at 1100 K, the use of such low-e ceramics will lead to a reduction in heat 
transfer via thermal radiation of about 70 %. For validation of the theory the results from 
our calculations were compared with experimentally obtained data. 
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1   Introduction 
 
In many applications the heat transfer through materials and the heat exchange between 
the surfaces are important. In automotive applications ceramic coatings with low emit-
tances are desirable. Hot parts, like the exhaust manifold or the catalytic converter can be 
covered with a ceramic coating. Such coatings should have a low emittance to reduce the 
heat transfer to neighboring parts within the engine compartment [3]. Additionally, ceram-
ics with a low emittance are useful in any applications at high temperatures, where the 
heat exchange via radiation has to be suppressed. Beside ceramic coatings, monolithic 
ceramics with low-e properties are also highly interesting. 
The total emittance of a ceramic depends on the temperature of this ceramic, as the spec-
tral emittance varies with wavelength. In this work oxide ceramics are investigated, as they 
are white in the visible and the near infrared region. This means, that the emittance is rela-
tively low for wavelengths below 2 µm. For opaque samples the emittance increases with 
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increasing wavelengths and becomes 1 at the so called Christiansen wavelength [4]. At 
the Christiansen wavelength the real part of the refractive index is 1, so that no reflection 
occurs. If the imaginary part of the refractive index is small compared to one, but non-
vanishing and if the thickness of the sample is high enough, no transmittance occurs and 
all radiation is absorbed, i.e. the emittance becomes 1. For most oxide ceramics, the 
Christiansen wavelength lies between 8 µm and 16 µm. The Christiansen wavelength de-
pends only on the refractive index of the material. Therefore no significant variation of the 
Christiansen wavelength can be achieved by changing the porosity or the structure of the 
ceramic. 
But the shoulder, where the increase of the emittance appears, can be shifted towards 
higher wavelengths, by optimizing the porosity and structure of the ceramic. The 
Christiansen wavelength itself can be shifted towards higher wavelength by using materi-
als with refractive indices, which are optimal. Therefore both parameters are varied in this 
work, the refractive index, by changing the material and the structure, by changing the pa-
rameters within the manufacturing process. 
In this work monolithic samples were produced via a sintering process, as this is the most 
common method of producing ceramics. The results can also be applied to ceramic coat-
ings, as such coatings can be produced in a similar way, for example via electrophoretic 
deposition with a sintering process afterwards. 
 
 
2   Radiative transfer within porous media 
 
The propagation of radiation through a porous medium like a ceramic is hindered by scat-
tering and absorption. Scattering of radiation mainly occurs at the interface between the 
medium (for example the ceramic) and the surrounding medium (mostly air) and at the air-
filled pores within the ceramic. The absorption mainly occurs within the ceramic. For re-
ducing the emittance of a ceramic, the scattering has to be maximized and the absorption 
has to be minimized. The correlation between the scattering and absorption on the one 

hand and the complex refractive index m = n +i⋅k and the structure of the medium on the 
other are discussed in the following chapters. 
The propagation of radiation through a medium with known scattering and absorption co-
efficients can be described via the equation of radiative transfer. A solution of the equation 
of radiative transfer is presented in chapter 2.2. The scattering and absorption coefficients 
can be calculated from the known refractive index and the pore size distribution within the 
ceramic by using Mie-theory as explained in chapter 2.3. In chapter 2.1, the definitions of 
the spectral and total emittance are given. 
 
2.1   Emittance 
 

The emittance ελ
 
(T ) of a surface at a given temperature is defined as the ratio of the in-

tensity emitted by a surface Iλ
 
(T ) and the intensity Ib,λ

 
(T ) emitted by a black body at the 

same temperature T: 
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However, for semitransparent samples no emittance can be given, as the emittance of 
such ceramics is not only a surface property, but also a volumetric property. Additionally a 
temperature gradient may occur inside the ceramic. In such cases it is possible to use an 

apparent emittance, where the intensity Iλ
 
(T ) in Eq. (1) represents the intensity emitted by 
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the ceramic sample with an average temperature T. For a simpler presentation in this pa-
per, the apparent emittance is always called emittance. 

The directional emittance ελ can be measured directly or calculated from the directional-
hemispherical reflectance Rdh and transmittance Tdh: 
 

dhdh1 TR −−=λε    . (2) 

 

The total emittance ε 
(T ) can be calculated from the spectral emittance ελ

 
: 
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The total emittance is a measure for the amount of energy, which is emitted by a sample 
at a certain temperature. 
 
 
2.2   Equation of radiative transfer 
 
The transmission of thermal radiation through semitransparent materials and the emission 
of radiation from semitransparent materials can be described by the equation of radiative 
transfer [5], which gives the variation of the spectral intensity I in dependence of the path x 
parallel to the radiation propagation within a plane-parallel sample: 
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with E: extinction coefficient, E = A + S, A: absorption coefficient, S: scattering coefficient, 

and p
 
(Ω 

’,Ω ): phase function for the radiation that is coming from the solid angle Ω 
’ and 

is scattered into the solid angle Ω. The first term on the right hand side of Eq. (4) de-
scribes the exponential decrease of I caused by scattering and absorption events. The 
second and third term characterize the increase of I due to isotropic scattering and re-

emission, respectively. The source term J
 
(τ ) accounts for the incoming radiation F, that 

reaches the point τ (optical depth, τ = E⋅x
 
), if the sample is irradiated normal to the sur-

face (Figure 1): 
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being the directional-directional reflectance normal to the surface air – medium and me-

dium – air and ρp(τ ) being the internal reflectance, which is given as the sum of the terms 
in Figure 1. 
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Figure 1: Multiple reflections of the incoming radiation F, which is impinging normal to the 
sample surface. Also given are the reflected parts of the incoming radiation. Summarizing 

these terms leads to the internal reflectance ρp(τ ). 
 

Eq. (4) can be rewritten and simplified for isotropic scattering (p ≡ 1): 
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with τ : optical depth, τ = E⋅x, ω0: albedo, ω0 = S/E, µ: direction cosine, µ = cosθ, and θ : 
scattering angle. 
The equation of radiative transfer can be solved for isotropic scattering. The transforma-
tion of the solution to anisotropic scattering can be made via a scaling concept [6]. In this 

scaling concept an effective optical thickness τ0* and an effective albedo ω0* are defined, 

which are correlated to the optical thickness τ0 = E⋅d and the albedo ω0 by the anisotropy 
factor g: 
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with 
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The values of the anisotropy factor are within the interval  –1 (backward scattering) to +1 
(delta function like forward scattering). The effective extinction coefficient E* is defined 
analogously (see also Eq. (24)). 
To solve Eq. (7) the discrete ordinate approximation can be used [7]. For this approxima-
tion the integral in Eq. (7) is transformed into a sum over a few intensities. For the three-
flux approximation three discrete directions are regarded: 
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The direction cosine of these directions are determined from the weight factors aj of the 
intensities Ij to [7]: 
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The boundary conditions are 
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The mean internal reflectance iR  can be determined from the angular dependent reflec-

tance Ri: 
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It represents that part of the scattered radiation, which hits the interface medium – air from 
all directions and is reflected back into the medium. 
The three-flux approximation has mathematically the same complexity as the two-flux ap-
proximation, but provides a far better accuracy [8]. 
Finally one gets the macroscopic values directional-hemispherical reflectance Rdh and 
transmittance Tdh in dependence on the microscopic values effective extinction coefficient 

E*, effective albedo ω0* and the complex refractive index m = n +i⋅k of the medium: 
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When measuring the reflectance and transmittance of the sample, the reemission term in 
Eq. (4) can be neglected, as the incoming radiation is modulated by FTIR-technique, 
whereas the emitted radiation is not modulated. For calculating the emitted radiation of the 
sample as a function of the sample temperature, the boundary conditions have to be 
modified and the source term in Eq. (4) can be neglected, as no incoming radiation has to 
be considered. 
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2.3   Mie-theory 
 
Mie-theory gives a description of the scattering of an electromagnetic plane wave at a 
spherical particle. This theory is named after Gustav Mie, who first published it in 1908 [9]. 
For spheres, the Maxwell equations can be solved exactly. The whole procedure is de-
scribed in detail in [10, 11, 12]. As a result of this calculations one gets the so called de-

velopment coefficients aj und bj, which are determined by the Ricatti-Bessel functions ψj, ζj 

and their derivatives ψ′j, ζ′j  [11]: 
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mair gives the complex refractive index of the pores, which are filled with air and m gives 

the complex refractive index of the solid ceramic. The Ricatti-Bessel functions ψj and ζj 
are defined by the spherical Bessel and Hankel functions jj and hj [10]: 
 

( ) ( ) ( ) ( )νννζνννψ )1(     ,     jjjj hj ⋅=⋅=    . (19) 

 
The definitions of the spherical Bessel and Hankel functions are for example given in [13]. 
Finally one gets the absorption and scattering coefficients of spheres as a function of the 
complex refractive indices mair, m and the size parameter z: 
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=    , (20) 

 

where D is the particle diameter and λ is the wavelength of the incoming radiation. The 
Mie-theory is only valid for spherical particles, but even for non-spherical particles reliable 
results, as mentioned in literature [10], can be obtained. 
In porous ceramics mainly the air-filled pores, which are embedded in the solid ceramic 
with its complex refractive index m, are responsible for the scattering of radiation. 
The scattering cross section Csca and the absorption cross section Cabs are defined as the 
quotient of the scattered or absorbed radiant power and the incoming intensity, respec-
tively. By dividing the scattering and absorption cross sections by the geometrical cross 
section, one gets the efficiency for scattering Qsca and absorption Qabs, which are deter-
mined by the development coefficients aj and bj [11]: 
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The efficiency for extinction Qext is defined as the sum of the efficiency for scattering and 

absorption. With the known porosity Π of the sample, the extinction coefficient E and the 
scattering coefficient S can be calculated for a given pore diameter D [14]: 
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The anisotropy factor g is determined by the development coefficients aj and bj, too [15]: 
 

 
( ) ( )

( )
( )∑

∞

=

++ 








+

+
++

+

+
=

1

11

ext
2

Re
1

12
Re

1

24

j

jjjjjj ba
jj

j
bbaa

j

jj

Qz
g    . (23) 

 
With the anisotropy factor, the effective efficiency for extinction Qext* and scattering Qsca* 
can be derived as well as the effective extinction and scattering coefficients E* and S*: 
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The scattering within a powder occurs at the powder-particles, that means at the inter-
faces air-medium, whereas the scattering inside a ceramic occurs at the air-filled pores, 
that means at the interfaces medium-air (Figure 2), as mentioned above. Both cases can 
be described with Mie-theory, only the refractive indices need to be changed. 
Normally one has not only pores with a given diameter D, but a pore size distribution. Of-

ten one assumes that the pore volume within a logarithmic diameter interval ∆lnD is dis-
tributed like a logarithmic normal distribution [11]: 
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By a least-squares-fit with the measured spectral effective extinction coefficient E*exp and 
the spectral effective extinction coefficient E* calculated from Eq. (22) and Eq. (24), the 

modal value DM and the geometric mean standard deviation σg can be calculated. 
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powder ceramic

 
Figure 2: Within a powder scattering occurs mainly at the powder-particles (shown on the 
left side), whereas inside a ceramic scattering occurs mainly at the air-filled pores (shown 
on the right side). 
 
 
3   Sample production and experimental set up 
 
The monolithic samples, which are characterized in this work, were made via a sintering 
process at ZAE Bayern. First, the ceramic powders were pressed at 100 MPa. Then the 
obtained green bodies were sintered at different temperatures and with different sintering 
times. The porosities of the samples were measured using the Archimedes principle. The 
resulting data of the produced sample slides, which have a diameter of about 30 mm, can 
be seen in Table 1. Additionally several SEM (scanning electron microscope) – pictures of 
the samples were made. 
 
Table 1: Datasheet of the monolithic ceramic samples, prepared at ZAE Bayern. The 
samples have a diameter of about 30 mm. 

sample 
No. 

material 
thickness 

 
d / mm 

sintering 
temperature 

Ts / K 

sintering 
time 
ts / h 

porosity 
 

ΠΠΠΠ 

1 HfO2 1.3 1473 1 0.39 

2 Al2O3 4.0 1973 8 0.02 

3 Al2O3 3.7 1873 6 0.27 

4 TiO2 1.3 1873 8 0.01 

5 TiO2 2.3 1373 6 0.42 

6 Y2O3 2.1 1873 6 0.17 

7 Y2O3 2.4 1773 2 0.37 

 
The ceramic coating presented in this work was prepared at the German Aerospace Cen-
ter (DLR) via EB-PVD (electron-beam physical-vapor deposition) as explained in [16]. 
The directional-hemispherical transmittance Tdh of both, the ballistic transmitted radiation 
and the diffusely scattered radiation at the backside of the sample was measured by an 
integrating sphere (Figure 3) [17]. The directional-hemispherical reflectance Rdh can also 
be measured using an integrating sphere. For the wavelength range from 0.25 µm to 
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2.5 µm a Perkin Elmer lambda 9 diffraction-spectrometer was used and for the wavelength 
range from 1.4 µm to 18 µm a Bruker IFS 66v FTIR-spectrometer was used. 
 

 
Figure 3: Measurement set-ups (directional-hemispherical reflectance on the left side and 
directional-hemispherical transmittance on the right side) with an integrating sphere (IS). 
The internal surface of the integrating sphere is coated with a highly reflecting coating, 
which reflects the radiation diffusely. 
 
 
4   Results and analysis 
 
The real part n and the imaginary part k of the complex refractive index m of the materials 
investigated in this work are depicted in Figure 4 and Figure 5, respectively. The data was 
taken from literature [18, 19] to be used in the calculations described above. 
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Figure 4: Real part n of the complex refractive index of several ceramics in dependence 

on the wavelength λ from 0.5 µm to 18 µm at ambient temperature. 
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Figure 5: Imaginary part k of the complex refractive index of several ceramics in depend-

ence on the wavelength λ from 3 µm to 18 µm at ambient temperature, note the logarith-
mic ordinate. 
 
The directional-hemispherical reflectance Rdh and transmittance Tdh of the samples were 
measured. Samples with different thicknesses were produced. For the determination of 
the emittance, samples with a vanishing transmittance were produced. Additionally sam-
ples with a non-vanishing transmittance were made, for an analysis of the structure. 
First, the emittance was determined from the samples with vanishing transmittance. The 
emittance of conventional coatings, like thermal barrier coating, made of PYSZ (partially 
yttria stabilized zirconia), is relatively high. The spectral emittance of one PYSZ-coating is 
depicted in Figure 6. The total emittance at 1100 K is 0.8. The spectral emittance of haf-
nium oxide (a conventional monolithic ceramic), also depicted in Figure 6, has a total emit-
tance of 0.73, which is only slightly smaller. Hafnium oxide is not often used, but it is simi-
lar to zirconia, as it has almost the same properties as zirconia, which is used in a wide 
range of applications. 
Both ceramics show, like most oxide ceramics, a low emittance in the visible wavelength 
region. Therefore, they appear white. But with increasing wavelength, the emittance in-
creases and becomes one at the so called Christiansen wavelength. For PYSZ and haf-
nium oxide, the Christiansen wavelength lies at 13 µm, independent of the structure. 
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Figure 6: Directional emittance ελ of partially yttria stabilized zirconia (PYSZ) and hafnium 

oxide in dependence on the wavelength λ from 0.25 µm to 18 µm at ambient temperature. 
 
By changing the structure it is possible to shift the slope of the emittance towards longer 
wavelength. This is demonstrated in Figure 7 for alumina. The total emittance at 1100 K of 
a sample with a porosity of 0.02 is 0.53. By increasing the porosity, the total emittance can 
be decreased to 0.24. This is due to the fact, that the spectral emittance is reduced, espe-
cially between 2 µm and 8 µm. 
Due to a higher imaginary part of the refractive index, the same procedure does not lead 
to a significant reduction of the spectral emittance of hafnium oxide, although the 
Christiansen wavelength of alumina lies at 10 µm and is therefore lower than the 
Christiansen wavelength of hafnium oxide. As a consequence, both parameters need to 
be optimized, the material with its refractive index and the structure of the material. 
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Figure 7: Directional emittance ελ of alumina in dependence on the wavelength λ from 
0.25 µm to 18 µm at ambient temperature. 



 12 

TiO2 has with 12 µm a higher Christiansen wavelength than Al2O3 and a higher refractive 
index than HfO2 and ZrO2. Therefore, the total emittance at 1100 K is lower than for the 
named materials. The spectral emittance for two TiO2-samples is depicted in Figure 8. 
The resulting total emittance at 1100 K is 0.34 for a porosity of 0.01 and 0.27 for a poros-
ity of 0.42. 
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Figure 8: Directional emittance ελ of titania in dependence on the wavelength λ from 
0.25 µm to 18 µm at ambient temperature. 
 
In Figure 9, the spectral emittance of yttria is plotted for different porosities. The 
Christiansen wavelength lies at 15 µm. Because of that and the fact, that yttria has the 
lowest imaginary part of the investigated materials, the emittance at 1100 K is lower than 
for the other ceramics characterized in this work. The emittance can be reduced addition-
ally by varying the structure. For a porosity of 0.17 one gets an emittance of 0.19 at 
1100 K. If the porosity is increased furthermore, the total emittance also increases. There-
fore an optimum of the structure and porosity exists, at which the total emittance has a 
minimum. 
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Figure 9: Directional emittance ελ of yttria in dependence on the wavelength λ from 
0.25 µm to 18 µm at ambient temperature. 
 
The Christiansen wavelength and the total emittance at 1100 K for all samples are shown 
in Table 2. 
 

Table 2: Christiansen wavelength λChr and total emittance ε 
(T

 
) of the measured mono-

lithic ceramic samples. 

sample 
No. 

material 
Christiansen 
wavelength 

λλλλChr / µm 

total emittance 

εεεε
 
(T

 
) 

at T = 1100 K 

1 HfO2 13 0.73 

2 Al2O3 10 0.53 

3 Al2O3 10 0.24 

4 TiO2 12 0.34 

5 TiO2 12 0.27 

6 Y2O3 15 0.19 

7 Y2O3 15 0.27 

 
To get a correlation between the structure and the total emittance, SEM (scanning elec-
tron microscope) – pictures of the samples were taken. In Figure 10, Figure 11 and Figure 
12, SEM-pictures of the samples 4, 5 and 6 are shown, respectively. The porosity of sam-

ple 4 (TiO2) is very low (Π = 0.01), therefore, the dimensions of the structure are about 
50 µm. Due to the relatively high real part of the refractive index, a total emittance of 0.34 
results at 1100 K. With a lower sintering temperature and time, one gets a significantly 

higher porosity (Π = 0.42) with a finer structure (sample 5) and dimensions of about 3 µm. 

This results in a lower total emittance of 0.27. Sample 6 (Y2O3 with Π = 0.17) has a struc-
ture with dimensions of about 1 µm and a total emittance of 0.19. This is due to the struc-
tural properties and the Christiansen wavelength, which lies at a longer wavelength, com-
pared to TiO2. 
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Figure 10: SEM-picture (enlargement factor = 2000) taken from sample 4 (TiO2 with 

Π = 0.01). 
 

 
Figure 11: SEM-picture (enlargement factor = 2000) taken from sample 5 (TiO2 with 

Π = 0.42). 
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Figure 12: SEM-picture (enlargement factor = 2000) taken from sample 6 (Y2O3 with 

Π = 0.17). 
 
To get more information about the structure of sample 6, the directional-hemispherical 
reflectance and transmittance were measured for a thinner sample, which was prepared 
and sintered together with sample 6, so that both samples have the same properties, ex-
cept for the thickness. 
The effective optical thickness and the effective albedo, which are equivalent to the effec-
tive extinction coefficient and effective scattering coefficient, are determined using Eq. (15) 
and Eq. (16). From the known effective scattering coefficient the dimensions of the struc-
ture (Eq. (25)) were calculated using Mie-theory. The resulting structural properties are 
depicted in Figure 13. Although spherical pores were assumed as scattering centers, the 
resulting dimensions agree well with the SEM-pictures. Because of this, the pore volume 
distribution in Figure 13 gives the distribution of the structural dimensions. 
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Figure 13: Pore volume distribution of sample 6 (Y2O3 with Π = 0.17) determined via scat-
tering of radiation inside the ceramic. 
 
 
5   Conclusions 
 
It was shown, that the infrared-optical properties of oxide ceramics can be varied in a rela-
tively wide range, by varying the material and the structure of the sample. Some of the 
most promising materials were investigated in this work. As a result the emittance was 
reduced from 0.80 to 0.19 by optimizing the manufacturing process. One requirement for 
lowering the emittance is the usage of a material with a high real part and a low imaginary 
part of the complex refractive index. A second requirement is the optimal structure of the 
produced sample. The dimensions of the structure should have the same order of magni-
tude or be slightly smaller, than the wavelength of the incoming radiation, to get a maximal 
reflectance and therefore a minimal emittance. 
In this work preliminary investigations were done to check the potential of possible reduc-
tions of the emittance of ceramics. As these investigations were successful, work is 
planned for a further reduction of the emittance, e.g. an emittance below 0.1 at 1100 K. In 
the future, mixtures of different materials with variation of the structure will be investigated. 
For example, a mixture of titania and yttria, would be promising, as it unites the high real 
part of the refractive index of titania with the low imaginary part of the refractive index of 
yttria. As the refractive index of mixtures can differ significantly from the refractive index of 
the raw material a detailed analysis of the mixtures will be necessary. 
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7   Symbols 
 

µ direction cosine  

τ optical depth  

τ0 optical thickness  

Π porosity  

θ scattering angle rad 

ε total emittance  

ελ spectral emittance  

λ wavelength m 

λChr Christiansen wavelength m 

Ω, Ω 
’ solid angle sr 

ω0 albedo  

σg geometric mean standard deviation  

ψj, ζj Ricatti-Bessel functions  

ρp internal reflectance  

A absorption coefficient m
-1 

ai weight factors  
aj, bj development coefficients  
Cabs absorption cross section m

2 

Cext extinction cross section m
2 

Csca scattering cross section m
2 

d thickness m 
D diameter m 
DM modal value m 
E extinction coefficient m

-1 

F radiative flux W m
-1

 m
-2

 
g anisotropy factor  

Iλ spectral intensity W m
-1

 m
-2

 sr
-1

 

Ib,λ spectral intensity of a black body W m
-1

 m
-2

 sr
-1

 

J source term W m
-1

 m
-2

 sr
-1

 
k imaginary part of the complex refractive index  
m complex refractive index  
n real part of the complex refractive index  
p phase function  
Qabs efficiency for absorption 

 

Qext efficiency for extinction 
 

Qsca efficiency for scattering 
 

Rdh directional-hemispherical reflectance  
Ri angular dependent reflectance  

Ri  mean internal reflectance  

Rp reflection of perpendicular beam onto surface  
S scattering coefficient m

-1 

T temperature K 
Tdh directional-hemispherical transmittance  
ts sintering time s 
Ts sintering temperature K 
x length m 
z size parameter  
Subscript: * effective  
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