# MEASUREMENTS OF VISCOSITY AND DENSITY OF N-ALKANE AND THEIR MIXTURES

Hilal Gurbuz Yucel <sup>1</sup> and <u>Aysenur Uysal<sup>2</sup></u>

1,2 Suleyman Demirel University, Faculty of Science, Dept. of Chemistry, Physical Chemistry Division, 32260 Isparta-Turkiye

#### **Abstract**

In this study, we present data for viscosity and density of n-alkanes(C<sub>9</sub>, C<sub>10</sub>, C<sub>11</sub>, C<sub>12</sub>, C<sub>13</sub>, C<sub>15</sub>, C<sub>20</sub>, C<sub>24</sub>, C<sub>28</sub>, C<sub>32</sub>, C<sub>36</sub>, C<sub>40</sub>, C<sub>44</sub>) and their mixtures (quantitative n-alkane mixtures;C<sub>6</sub>-C<sub>44</sub>, petroleum waxes and polywax). Viscosity (dynamic (η), (kinematic (ν)), rheological properties (shear rate, shear stress) and density (ρ) were measured by Anton Paar SVM 3000 Stabinger Viscometer according to ASTM D7042-04. Viscosity and density measuring values' reproducibilities were 0.28% and 0.02%, respectively. The measuring data were compared with other experimental data; API 42, 44 and Yaws over a wide range of temperatures (293-373 K). The results obtained by this measuring system were highly satisfactory.

**Key Words**: viscosity and density, n-alkane mixtures, n- paraffin, wax

To whom correspondence should be addressed. E-mail: hyucel@fef.sdu.edu.tr

#### 1. Introduction

The dynamic viscosity  $(\eta)$  and density  $(\rho)$  are very important thermophysical properties in the chemical and petrochemical industries. Petroleum fractions include complex mixtures of acyclic (paraffins or alkanes, isoalkanes, alkenes, isoalkenes) and cyclic (aromatics and naphthalenes) hydrocarbons. This different organic structure of hydrocarbons causes change of some physical (density) and transport (viscosity, thermal conductivity) properties [1-5]. Unfortunately, reliable viscosity data on multicomponent liquid mixtures are very scarce in the literature. Several experimental, predictive and correlative calculation methods for n-alkanes are proposed in the literature [6-18]. Generally, these correlations were used to light hydrocarbon and mixtures. However, these methods may lead to significant errors when they were applied to the heavier compounds. Recently, new empirical correlations about chemical (M) and thermophysical  $(\eta, \rho)$  properties of nalkanes (C<sub>6</sub>-C<sub>44</sub>) were evaluated by the use of literature data and gas chromatography results. The results obtained with these correlations were compared with API and Yaws experimental data [19-21]. Molecular weight, density and dynamic viscosity predictions were evaluated as average absolute deviations of 0.68, 0.21 and 2.4%, respectively [6]. In this study, we aimed to highly satisfactory measurements of viscosity and density for nalkanes and their mixtures. N-alkanes were measured as pure in liquid phase at ambient temperature (<C20) but the heavier ones were measured as binary and multicomponent mixtures [18]. The quantitative D2887 calibration mixture containing 17 components in the C<sub>6</sub>-C<sub>44</sub> range was used for gas chromatography calibration in previous work [6]. In the result of our study, we would investigate the changes in thermophysical and

chemical properties of n- alkanes and their mixtures.

# 2. Experimental

# 2.1 Source of the chemicals

The pure hydrocarbons, qualitative and quantitative mixtures were obtained from various sources. The sources and purities of the materials were as follows: toluene(J.T. Baker; 99.5 wt.%), n-nonane(Merck; 99 wt.%), n-decane(Merck; 99 wt.%), n-undecane(Merck; 99 99.6 wt.%), 99.5 wt.%), n-dodecane(Fluka; n-tridecane(Fluka; wt.%), tetradecane(Merck; 99 wt.%), n-pentadecane(Fluka; 99.8 wt.%), n-octadecane (Merck; 99 wt.%), n-eicosane(Acros; 99 wt.%), n-tetracosane(Merck; 99 wt.%), n-octacosane(Fluka; 99 wt.%), n-dotriacontane(Alfa; 97 wt.%), n-hexatriacontane(Alfa; 97 wt.%), ntetracontane(Acros; 98 wt.%), n-tetratetracontane(Acros; 98 wt.%), qualitative polywax 1000(Restek), quantitative ASTM D 2887 C<sub>6</sub>-C<sub>44</sub> (Restek), adjustment standard set and certified viscosity standard(Anton Paar; SH L, M, C, H, D). Three different petroleum wax fractions were obtained from Izmir-Tupras refineries.

# 2.2 Sample preparations

Heavier n-alkanes(>C<sub>20</sub>) and their mixtures are include micro and macro crystals. Therefore, heavy n-alkanes were dissoluted in lighter n-alkane. Then the temperature of the wax and solvent mixtures were slowly increased and dissoluted near the dissolution temperature. Analysis temperature was started at this temperature. The concentration of n-alkanes is showed in tables. The purity and concentration of quantitative C<sub>6</sub>-C<sub>44</sub> mixture were given in table 1.

#### 2.3 Viscosity and density measurements

Anton Paar SVM 3000 Stabinger Viscometer operating on the measuring cells are consist of a pair of rotating concentric cylinders and oscillating U-tube according to ASTM D7042-04[22]. The dynamic viscosity is determined from the equilibrium rotational speed of the inner cylinder under the influence of the shear stress of the test specimen and an eddy current brake in conjunction with adjustment data. The density is determined by oscillation frequency of the U-tube in conjunction with adjustment data. The kinematic viscosity is calculated by dividing the dynamic viscosity by the density. Adjustment standard set and certified viscosity standard (Anton Paar; SH L, M, C, H, D) were used to measure the calibration of Anton Paar Stabinger Viscometer SVM 3000. The temperatures were varied in steps of 5/10/20 K in the range between 293 and 373 K. Viscosity and density measuring values' reproducibilities were 0.28% and 0.02%, respectively. Table 2 and 3 show the calibration results for viscosity and density at different temperatures.

#### 3. Results and discussion

Figure 1 illustrates the scatter of n-dodecane for the changes of viscosity and density measurements versus temperature. Figure 2 shows the change in the viscosities of n-alkane mixtures according to density and temperature. It can be observed from the measuring data presented in table 4-5. These data were compared with API 42, 44 and Yaws' experimental data over a wide range of temperatures (293-373 K). Experimental viscosity and density results are as accurate as in following tables.

# 3. Conclusions

In this paper, viscosity (dynamic  $(\eta)$ , (kinematic (v)), rheological properties (shear rate, shear stress) and density  $(\rho)$  were measured by the use of Anton Paar SVM 3000 Stabinger Viscometer of n-alkanes and their binary and multicomponent liquid mixtures. In conclusion, when compared with the other recommended experimental data by API and Yaws, this new measuring data were highly satisfactory.

In the result of our study, we have investigated the changes in thermophysical and chemical properties of n- alkanes and their mixtures in liquid phase.

List of nomenclature, abbreviation and symbols

API American Petroleum Institute

ASTM American Society for Testing and Materials

C Carbon

D Shear rate (1/s)

T Temperature (K)

#### Greek letters

η Dynamic viscosity (mPa.s)

v Kinematic viscosity (mm<sup>2</sup>/s)

 $\rho$  Density (kg/m<sup>3</sup>)

τ Shear stress (Pa)

# Acknowledgements

The authors acknowledge with thanks financial support the Süleyman Demirel University Research Fund through the Project 2003-51, 1011YL05 and 1057M05.

# **References:**

- [1] M. Arıkol, and H. Gürbüz, The Can. J. Chem. Eng., 70(1992)1157-1163.
- [2] H. G. Yücel and S. Ozdogan, The Can. J. Chem. Eng., 76(1998)148-155.
- [3] S. Ozdogan and H. G. Yücel., Fuel, 79(2000)1209-1214.
- [4] S. Ozdogan and H. G. Yücel., Fuel, 80(2001)447-449.
- [5] H. G. Yücel, in press Analytica Chimica Acta, 2005.
- [6] R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, Mc Graw-Hill, New York, 1987.
- [7] W. D. Monnery, W. Y. Svrcek, and A. K. Mehrotra, Can. J. Chem. Eng. 73 (1995) 3.
- [8] A.K. Mehrotra, W. D. Monnery, and W. Y. Svrcek, Fluid Phase Equilib. 117 (1996) 344-355.
- [9] M.J. Assael, E. Charitidou, J. H. Dymond, and M. Papadaki, Int. J. Thermophys. 13 (1992) 237-249.
- [10] J. Wu, Z. Shan, Abdul-Fattah A. Asfour, Fluid Phase Equilib.143 (1998) 263-274.
- [11] H. N. Abdulghanni, and Abdul-Fattah A. Asfour, The Can. J. Chem. Eng., 78 (2000) 355.
- [12] A. M. Elsharkawy, T. A. Al-Sahhaf, M. A. Fahim, Fuel, 79 (2000) 1047-1055.
- [13] E. Retzekas, E. Voutsas, K. Magoulas, and D. Tassios, Ind. Eng. Chem. Res., 41 (2002) 1695-1702.
- [14] E. Aesen, E. Rytter, and H. A. Oye, Ind. Eng. Chem. Res., 29 (1990) 1635-1640.
- [15] D. R. Caudwell, J.P. M. Trusler, V. Vesovic, and W. A. Wakeham, Int. J. Thermophys, 25 (2004) 1339-1352.
- [16] K. S. Pedersen and H. P. Ronningsen, Energy Fuels, 14 (1999) 43-51.
- [17] M. R. Daubert, Charecterization and Properties of Petroleum Fractions, ASTM Stock Number; MNL50, Philadelphia, 2005.
- [18] D. W. Jennings and K. Weispfennig, Fluid Phase Equilib. 227 (2005) 27-35.
- [19] API Research Project 42, The Pennsylvania State University, College of Science, Pensilvania, USA, 1966.
- [20] API Research Project 44, Texas A&M University, College Station, Texas 77843, USA,1973.
- [21] C. L. Yaws, Chemical Properties Handbook, McGraw-Hill, 1999.
- [22] ASTM D7042- Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer, July 2004

# **Tables**

**Table 1:** Chemical properties of quantitative ASTM D 2887 C<sub>6</sub>-C<sub>44</sub>

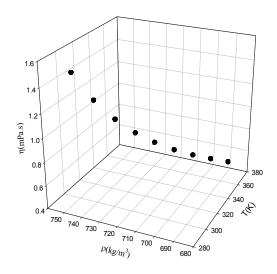
| No | Compounds           | Formula        | Percent Purity (%) | Concentration (w/w %) |
|----|---------------------|----------------|--------------------|-----------------------|
| 1  | n-Hexane            | $C_6H_{14}$    | 99                 | 6                     |
| 2  | n-Heptane           | $C_7H_{16}$    | 99                 | 6                     |
| 3  | n-Octane            | $C_8H_{18}$    | 99                 | 8                     |
| 4  | n-Nonane            | $C_9H_{20}$    | 99                 | 8                     |
| 5  | n-Decane            | $C_{10}H_{22}$ | 99                 | 12                    |
| 6  | n-Undecane          | $C_{11}H_{24}$ | 99                 | 12                    |
| 7  | n-Dodecane          | $C_{12}H_{26}$ | 99                 | 12                    |
| 8  | n-Tetradecane       | $C_{14}H_{30}$ | 99                 | 12                    |
| 9  | n-Hexadecane        | $C_{16}H_{34}$ | 99                 | 10                    |
| 10 | n-Octadecane        | $C_{18}H_{38}$ | 99                 | 5                     |
| 11 | n-Eicosane          | $C_{20}H_{42}$ | 99                 | 2                     |
| 12 | n-Tetracosane       | $C_{24}H_{50}$ | 99                 | 2                     |
| 13 | n-Octacosane        | $C_{28}H_{58}$ | 99                 | 1                     |
| 14 | n-Dotriacontane     | $C_{32}H_{66}$ | 99                 | 1                     |
| 15 | n-Hexatriacontane   | $C_{36}H_{74}$ | 99                 | 1                     |
| 16 | n-Tetracontane      | $C_{40}H_{82}$ | 98                 | 1                     |
| 17 | n-Tetratetracontane | $C_{44}H_{90}$ | 99                 | 1                     |

**Table 2:** Dynamic viscosity calibration results (Standard: SH C112 2004 07 07)

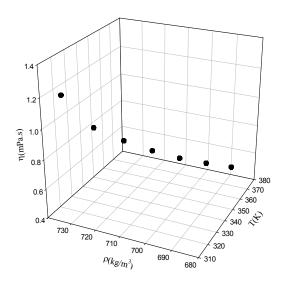
| $t(^{o}C)$ | $\eta_{Reference}$ (mPa.s) | η Measuring (mPa.s) | Deviations% |
|------------|----------------------------|---------------------|-------------|
| 20         | 99.09                      | 99.25               | +0.16       |
| 40         | 38.55                      | 38.54               | -0.02       |
| 60         | 18.29                      | 18.27               | -0.09       |
| 80         | 10.06                      | 10.05               | -0.09       |
| 100        | 6.190                      | 6.172               | -0.28       |

Deviation (%)= 
$$\frac{|\eta_{i,measuring} - \eta_{i,Reference}|}{|\eta_{i,Reference}|}$$

**Table 3:** Density calibration results (Standard: SH C112 2004 07 07)


| t(°C) | $\rho_{\text{Reference}}(g/\text{cm}^3)$ | ρ <sub>Measuring</sub> (g/cm <sup>3</sup> ) | Deviation% |
|-------|------------------------------------------|---------------------------------------------|------------|
| 20    | 0.8290                                   | 0.8292                                      | +0.02      |
| 40    | 0.8166                                   | 0.8168                                      | +0.02      |
| 60    | 0.8043                                   | 0.8044                                      | +0.01      |
| 80    | 0.7920                                   | 0.7919                                      | -0.01      |
| 100   | 0.7797                                   | 0.7796                                      | -0.02      |

**Table 4:** The changes of the viscosity and density measurements with temperature of pure hydrocarbons


| hydrocarbons                  |              |                       |                              |               |        |          |           |
|-------------------------------|--------------|-----------------------|------------------------------|---------------|--------|----------|-----------|
| TP(IZ)                        | ( <b>D</b> ) | (1 / 3)               | 213                          | ( <b>D</b> .) | D(1/)  | η(mPa,s) | Deviation |
| T(K)                          | η(mPa,s)     | $\rho(\text{kg/m}^3)$ | $\nu (\text{mm}^2/\text{s})$ | τ(Pa)         | D(1/s) | API44    | %         |
| dodecane(C <sub>12</sub> )    |              |                       |                              |               |        |          |           |
| 293.15                        | 1.494        | 748.5                 | 1.996                        | 1.518         | 1016   | 1.503    | -0.619    |
| 303.15                        | 1.253        | 741.4                 | 1.690                        | 1.294         | 1033   | 1.261    | -0.674    |
| 313.15                        | 1.068        | 734.1                 | 1.455                        | 1.118         | 1047   | 1.078    | -0.900    |
| 323.15                        | 0.924        | 726.9                 | 1.272                        | 0.978         | 1058   | 0.929    | -0.543    |
| 333.15                        | 0.809        | 719.7                 | 1.124                        | 0.863         | 1067   | 0.812    | -0.415    |
| 343.15                        | 0.715        | 711.9                 | 1.004                        | 0.767         | 1074   | 0.717    | -0.280    |
| 353.15                        | 0.635        | 704.4                 | 0.902                        | 0.686         | 1080   | 0.638    | -0.406    |
| 363.15                        | 0.567        | 697.0                 | 0.814                        | 0.616         | 1086   | 0.573    | -0.922    |
| 373.15                        | 0.507        | 689.6                 | 0.735                        | 0.553         | 1091   | 0.517    | -1.887    |
| $tridecane(C_{13})$           |              |                       |                              |               |        |          |           |
| 293.15                        | 1.887        | 756.1                 | 2.495                        | 1.852         | 981.8  | 1.880    | 0.356     |
| 303.15                        | 1.568        | 749.0                 | 2.093                        | 1.572         | 1003   | 1.555    | 0.804     |
| 313.15                        | 1.304        | 741.9                 | 1.758                        | 1.333         | 1022   | 1.310    | -0.443    |
| 323.15                        | 1.116        | 734.7                 | 1.519                        | 1.157         | 1036   | 1.120    | -0.330    |
| 333.15                        | 0.968        | 727.5                 | 1.330                        | 1.014         | 1048   | 0.970    | -0.173    |
| 343.15                        | 0.848        | 720.3                 | 1.177                        | 0.897         | 1057   | 0.849    | -0.087    |
| 353.15                        | 0.749        | 713.0                 | 1.051                        | 0.798         | 1065   | 0.751    | -0.189    |
| 363.15                        | 0.665        | 705.7                 | 0.943                        | 0.713         | 1072   | 0.669    | -0.549    |
| 373.15                        | 0.593        | 698.5                 | 0.849                        | 0.639         | 1078   | 0.600    | -1.214    |
| pentadecane(C <sub>15</sub> ) |              |                       |                              |               |        |          |           |
| 293.15                        | 2.859        | 768.5                 | 3.721                        | 2.588         | 905.2  | 2.863    | -0.129    |
| 303.15                        | 2.293        | 761.6                 | 3.011                        | 2.155         | 939.5  | 2.303    | -0.426    |
| 313.15                        | 1.885        | 754.5                 | 2.498                        | 1.821         | 966.6  | 1.894    | -0.502    |
| 323.15                        | 1.580        | 747.4                 | 2.113                        | 1.561         | 988.1  | 1.586    | -0.404    |
| 333.15                        | 1.346        | 740.4                 | 1.818                        | 1.353         | 1006   | 1.349    | -0.252    |
| 343.15                        | 1.162        | 733.3                 | 1.584                        | 1.185         | 1020   | 1.163    | -0.129    |
| 353.15                        | 1.013        | 726.2                 | 1.396                        | 1.046         | 1032   | 1.014    | -0.059    |
| 363.15                        | 0.892        | 719.1                 | 1.240                        | 0.929         | 1042   | 0.900    | -0.889    |
| 373.15                        | 0.790        | 712.1                 | 1.110                        | 0.830         | 1050   | 0.793    | -0.303    |
| toluene                       |              |                       |                              |               |        |          |           |
| 293.15                        | 0.579        | 866.5                 | 0.668                        | 0.641         | 1107   | 0.585    | -0.952    |
| 298.15                        | 0.546        | 862.0                 | 0.634                        | 0.606         | 1109   | 0.550    | -0.669    |
| 303.15                        | 0.516        | 857.3                 | 0.602                        | 0.574         | 1111   | 0.519    | -0.467    |
| 308.15                        | 0.489        | 852.5                 | 0.574                        | 0.544         | 1113   | 0.490    | -0.171    |
| 313.15                        | 0.464        | 847.8                 | 0.547                        | 0.518         | 1115   | 0.464    | 0.106     |
| 318.15                        | 0.441        | 843.1                 | 0.523                        | 0.492         | 1117   | 0.440    | 0.282     |
| 323.15                        | 0.420        | 838.3                 | 0.501                        | 0.469         | 1118   | 0.418    | 0.522     |
| 328.15                        | 0.401        | 833.6                 | 0.481                        | 0.449         | 1119   | 0.398    | 0.729     |
| 333.15                        | 0.382        | 828.8                 | 0.461                        | 0.428         | 1121   | 0.379    | 0.755     |
| 338.15                        | 0.362        | 824.0                 | 0.439                        | 0.406         | 1122   | 0.361    | 0.296     |
| 343.15                        | 0.343        | 819.1                 | 0.419                        | 0.386         | 1123   | 0.345    | -0.542    |
| 348.15                        | 0.328        | 814.2                 | 0.403                        | 0.369         | 1124   | 0.330    | -0.642    |
| 5 10.15                       | 0.520        | O 1 1.2               | 0.105                        | 0.507         | 1141   | 0.550    | 0.012     |

**Table 5:** The changes of the viscosity and density with temperature of n-alkanes mixtures

| <b>Table 5:</b> The changes of the viscosity and density with temperature of n-alkanes mixtures |              |                       |                           |       |        |  |  |
|-------------------------------------------------------------------------------------------------|--------------|-----------------------|---------------------------|-------|--------|--|--|
| T(K)                                                                                            | η(mPa,s)     | $\rho(\text{kg/m}^3)$ | $v(\text{mm}^2/\text{s})$ | τ(Pa) | D(1/s) |  |  |
| $C_6$ - $C_{44}$ (0.25 v/v                                                                      | in dodecane) |                       |                           |       |        |  |  |
| 313.15                                                                                          | 1.050        | 733.0                 | 1.434                     | 1.101 | 1049   |  |  |
| 323.15                                                                                          | 0.908        | 725.6                 | 1.253                     | 0.962 | 1059   |  |  |
| 333.15                                                                                          | 0.797        | 718.2                 | 1.111                     | 0.851 | 1068   |  |  |
| 343.15                                                                                          | 0.705        | 710.7                 | 0.993                     | 0.758 | 1075   |  |  |
| 353.15                                                                                          | 0.625        | 703.2                 | 0.891                     | 0.676 | 1082   |  |  |
| 363.15                                                                                          | 0.555        | 695.5                 | 0.799                     | 0.604 | 1087   |  |  |
| 373.15                                                                                          | 0.494        | 688.0                 | 0.719                     | 0.539 | 1093   |  |  |
| wax1 (10% w/w                                                                                   | in toluene)  |                       |                           |       |        |  |  |
| 308.15                                                                                          | 0.638        | 849.9                 | 0.751                     | 0.699 | 1096   |  |  |
| 313.15                                                                                          | 0.603        | 845.0                 | 0.713                     | 0.662 | 1099   |  |  |
| 318.15                                                                                          | 0.570        | 840.5                 | 0.679                     | 0.628 | 1101   |  |  |
| 323.15                                                                                          | 0.541        | 836.0                 | 0.647                     | 0.597 | 1103   |  |  |
| 328.15                                                                                          | 0.514        | 831.4                 | 0.618                     | 0.568 | 1105   |  |  |
| 333.15                                                                                          | 0.489        | 826.7                 | 0.591                     | 0.541 | 1107   |  |  |
| 338.15                                                                                          | 0.465        | 822.0                 | 0.565                     | 0.515 | 1108   |  |  |
| 343.15                                                                                          | 0.441        | 817.3                 | 0.540                     | 0.490 | 1110   |  |  |
| 348.15                                                                                          | 0.417        | 812.6                 | 0.513                     | 0.463 | 1112   |  |  |
| 353.15                                                                                          | 0.387        | 807.8                 | 0.479                     | 0.431 | 1115   |  |  |
| 358.15                                                                                          | 0.374        | 802.9                 | 0.466                     | 0.417 | 1115   |  |  |
| 363.15                                                                                          | 0.335        | 797.1                 | 0.420                     | 0.375 | 1119   |  |  |
| wax2(10% w/w                                                                                    |              | ,,,,,                 | ···= ·                    | 0.070 | 1117   |  |  |
| 313.15                                                                                          | 0.636        | 842.2                 | 0.755                     | 0.696 | 1095   |  |  |
| 318.15                                                                                          | 0.599        | 837.8                 | 0.715                     | 0.657 | 1097   |  |  |
| 323.15                                                                                          | 0.567        | 833.2                 | 0.680                     | 0.623 | 1100   |  |  |
| 328.15                                                                                          | 0.536        | 828.6                 | 0.647                     | 0.591 | 1102   |  |  |
| 333.15                                                                                          | 0.506        | 8240                  | 0.614                     | 0.559 | 1104   |  |  |
| 338.15                                                                                          | 0.480        | 819.3                 | 0.586                     | 0.531 | 1106   |  |  |
| 343.15                                                                                          | 0.433        | 814.6                 | 0.532                     | 0.481 | 1111   |  |  |
| 348.15                                                                                          | 0.406        | 809.8                 | 0.501                     | 0.452 | 1113   |  |  |
| 353.15                                                                                          | 0.374        | 805.0                 | 0.464                     | 0.417 | 1117   |  |  |
| 358.15                                                                                          | 0.364        | 800.2                 | 0.455                     | 0.407 | 1117   |  |  |
| wax3(10% w/w                                                                                    |              | 000.2                 | 0.433                     | 0.407 | 1117   |  |  |
| 293.15                                                                                          | 0.746        | 859.8                 | 0.867                     | 0.812 | 1089   |  |  |
| 298.15                                                                                          | 0.700        | 855.3                 | 0.818                     | 0.765 | 1093   |  |  |
| 303.15                                                                                          | 0.658        | 850.6                 | 0.774                     | 0.721 | 1095   |  |  |
| 308.15                                                                                          | 0.621        | 846.1                 | 0.734                     | 0.682 | 1098   |  |  |
| 313.15                                                                                          | 0.588        | 841.6                 | 0.698                     | 0.647 | 1100   |  |  |
| 318.15                                                                                          | 0.556        | 837.1                 | 0.664                     | 0.613 | 1103   |  |  |
| 323.15                                                                                          | 0.527        | 832.6                 | 0.633                     | 0.582 | 1105   |  |  |
| 328.15                                                                                          | 0.500        | 828.0                 | 0.604                     | 0.553 | 1103   |  |  |
| 328.13                                                                                          | 0.300        | 828.0<br>823.4        | 0.576                     | 0.535 | 1107   |  |  |
|                                                                                                 |              |                       |                           |       |        |  |  |
| 338.15                                                                                          | 0.440        | 818.7                 | 0.538                     | 0.489 | 1111   |  |  |
| 343.15                                                                                          | 0.416        | 814.1                 | 0.511                     | 0.463 | 1113   |  |  |
| 348.15                                                                                          | 0.386        | 809.4                 | 0.477                     | 0.431 | 1116   |  |  |
| 353.15                                                                                          | 0.354        | 804.7                 | 0.439                     | 0.396 | 1119   |  |  |
| 358.15                                                                                          | 0.355        | 799.9                 | 0.444                     | 0.397 | 1118   |  |  |
| 363.15                                                                                          | 0.330        | 795.2                 | 0.416                     | 0.370 | 1120   |  |  |



**Figure 1.** The change in the viscosity of n-dodecane according to density and temperature .



**Figure 2.** Viscosity and density change with temperature of  $C_6$ - $C_{44}$  in dodecane mixture.